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Preface

“Prediction is very difficult, especially about the future.”
(attributed to Niels Bohr)

Introduction and Outline

The Minimum Description Length (MDL) principle provides a powerful phi-
losophy for learning from observations of the past [Grünwald et al., 2005; Ris-
sanen, 1989]. It equates learning with compressing the observational data.
As is common in science, there may be multiple contending explanations,
or models, for the data. In this thesis we investigate an application of the
MDL principle to prediction of the future when there are at least two such
models. We will show that the regular, commonly used form of MDL can
behave suboptimally and present a refinement of regular MDL that we call
the Switch-Point procedure. Being based on data compression, the Switch-
Point procedure may still be considered an application of the MDL principle,
although it differs from the way in which MDL is usually applied. For the
convenience of readers with a background in Bayesian statistics, we give
an interpretation of the regular MDL procedure as an instance of Bayesian
Model Averaging (BMA). As a consequence our results on MDL transfer to
BMA directly.

Our first contribution is to identify the momentum phenomenon, which arises
when one model enables the most accurate predictions of the future given
few observations of the past, but predictions based on another model be-
come more accurate when more data are collected. Essentially, this may
happen whenever the models themselves represent compound explanations.
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ii Preface

The momentum phenomenon will not occur, for example, if one model, M0,
represents the conjecture that the data come from repeated tosses of a bi-
ased coin with probability 3/5 of coming up heads, and the other model,
M1, describes the data as tosses of a coin with probability 4/7 of coming
up heads. It can occur, however, if M1 were to represent the hypothesis
that the data come from a coin with unknown probability p of coming up
heads. This latter model basically combines all the specific explanations “the
probability of coming up heads is 4/7” into the compound explanation “the
probability of coming up heads may be any fixed value p”. The momentum
phenomenon can occur, in that case, if the relative frequency of heads in the
data converges to some number f , which is close to, but not equal to 3/5.
If this happens, then for few observations of the past the slightly incorrect,
but specific model M0 will enable the best predictions, but when more data
are collected predictions based on the correct, but vague model M1 become
more accurate. The reason is that the predictor based on M1 has to learn
the value of the unknown parameter p. When little data is available, its
estimate of p will necessarily be poor and may sometimes be further away
from f than 3/5. However, the more data becomes available, the better p
can be estimated. Therefore, at some point the estimate of p will get closer
to f than 3/5 and, from that point on, predictions based on M1 will be more
accurate than those based on M0.

Though the momentum phenomenon has been previously recognised in a
somewhat implicit manner, its consequences have not before been well under-
stood. In particular, it is well known that, in cases such as the one described
above, regular MDL predictions will tend to resemble predictions based on
model M0 when few observations are available, and start to resemble pre-
dictions based on model M1, with the unknown parameter, when sufficient
data are collected. However, it turns out that the number of observations
at which MDL starts predicting in accordance with M1 can be much larger
than the number of observations at which predictions based on M1 become
more accurate than those based on M0. Thus, there is a certain inertia in
the behaviour of regular MDL. We will argue that this is a consequence of the
fact that the design of regular MDL procedures does not take the momentum
phenomenon into account.

As our second contribution, we develop the Switch-Point procedure, which
is a refinement of regular MDL that is designed with the momentum phe-
nomenon in mind. The idea of the Switch-Point procedure is as follows.
Let M0 and M1 be the same models as above. With each model Mj we
associate a predictor Pj that, given each initial data sequence x1, · · · , xn,
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Figure 1: A sketch of the difference in accumulated prediction error on n
observations between the predictor for model M1 and the predictor for model
M0 as a function of n.

makes a prediction of the value that will be observed for the (as yet unseen)
datum xn+1 according to Mj. Suppose that, when xn+1 is actually observed,
we have some way of measuring the error of the prediction of Pj for xn+1.
Then, before seeing xn+1, we can assess the quality of model Mj on data x1,
· · · , xn by examining the accumulated prediction error, Lj(x

n), of predictor
Pj. This is the prediction error made by Pj on x1, plus the prediction error
made on x2 by Pj based on x1, plus the prediction error on x3 based on
x1 and x2, and so on up to the prediction error made by Pj on xn based
on x1, · · · , xn−1. The prediction for xn+1 made by regular MDL based on
observations x1, · · · , xn always resembles that of the model Mj that has
achieved the smallest accumulated prediction error on these n observations.
Figure 1 shows a rough sketch of the difference in accumulated prediction er-
ror between the predictors for model M1 and model M0 as a function of the
number of observations, n, for a typical case of the momentum phenomenon.
We can see that predictions based on M0 are most accurate in region A since
the difference in accumulated prediction error between the models is increas-
ing. In region B the predictor based on model M1 is already better than
the predictor based on M0. However, it is not until after n0 observations
that MDL switches its preference to M1. This suggests that regular MDL
can be improved on by switching to M1 earlier, namely when the difference
in accumulated prediction error is at its maximum. The Switch-Point proce-
dure is an attempt to identify the number of observations, n∗, at which this
maximum is achieved and to construct a predictor whose predictions start
resembling those of M1 at a number of observations near n∗, rather than
n0. It will be shown that the Switch-Point procedure can never predict much
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worse than regular MDL, but may predict significantly better when the mo-
mentum phenomenon occurs. We conclude that the momentum phenomenon
can be exploited to improve predictive accuracy compared to regular MDL.
This leads to our most important insight, namely that for regular MDL the
momentum phenomenon should be considered a momentum problem.

Prediction with multiple models is closely related to model selection, which
is the task of selecting a single model to explain the data. In model selection
regular MDL always selects the model with smallest accumulated prediction
error. Preferably, the selected model should be the best predictor of future
data, which makes model selection closely related to prediction with multiple
models. But consider again region B in Figure 1. In this region it is unclear
which model should be selected. Has the data been explained best by model
M0, which has enabled us to predict the data most accurately? Or should
M1 be selected, since it is better for prediction of future data? As our third
contribution we argue that a third option, which we call the Switch-Point
model, should be considered within the regular MDL framework. The Switch-
Point model represents the refined hypothesis that both M0 and M1 have
merit, but for different amounts of data. We justify by the MDL principle
that the Switch-Point model should be considered. In addition, we give
an interpretation of the regular MDL procedure for model selection as an
instance of Bayes factors model selection. Therefore, just like in prediction,
our results transfer to the Bayesian perspective directly and the Switch-Point
model should be considered by Bayesians as well.

Outline

This thesis contains four chapters. Chapter 1 serves as an introductory chap-
ter to required background theory. It introduces the MDL and Bayesian
procedures for prediction and model selection. In Chapter 2 we introduce
the momentum phenomenon and Switch-Point procedure, and tentatively
demonstrate that the momentum phenomenon can become a momentum
problem. In Chapter 3 we prove that the momentum phenomenon may get
very large as measured, roughly speaking, by the maximum improvement
in predictive accuracy that any procedure might hope to gain compared to
regular MDL by dealing optimally with the momentum phenomenon. In ad-
dition, we present strong evidence that the momentum phenomenon is, in
fact, a momentum problem. Chapter 4 provides further discussion of the re-
sults from the previous chapters. We offer an explanation of the momentum
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problem and argue that it transfers from prediction to model selection. In
addition, we are able to shed more light on results in prior work by explaining
them in terms of the momentum problem. Finally, we make several detailed
suggestions for future investigation.

Personal Motivation

I think there are two fundamental problems in Artificial Intelligence (AI).
The first is to construct a useful representation of the world; the second is
to use this representation to act successfully. The definition of success, of
course, depends on the task at hand. Though much progress has been made
since the inception of the field of AI with Turing, I consider neither of these
problems to be solved to satisfactory degree.

In adherence to the motto first things first my main interest in AI lies with
constructing representations. I view this as the task of constructing stable
symbols that represent useful aspects of a noisy environment. This is equiv-
alent to solving the symbol grounding problem as defined by Harnad [1990],
who poses the question: “How can the semantic interpretation of a formal
symbol system be made intrinsic to the system, rather than just parasitic on
the meanings in our heads?” Harnad immediately answers his own question
by proposing that “[s]ymbolic representations must be grounded bottom-up
in nonsymbolic representations”. That is, he suggests constructing elemen-
tary stable symbols to represent useful aspects of the environment and to
construct higher-level symbols recursively by combining them.

Harnad suggests using connectionist techniques to construct elementary sym-
bols and approaches from traditional symbolic AI to combine them into
higher-level symbols. As an alternative, I would propose using models (Sec-
tion 1.3) to implement symbols. Models may be used to provide elemen-
tary stable symbols by modelling inputs from sensors1, but also to construct
higher-level symbols by modelling the behaviour of lower-level symbols. Thus
they unify the framework for symbol construction. In addition, by their
probabilistic nature models are able to account for noise in the environment.
Furthermore, by the MDL principle models can be assigned a clear interpre-
tation regardless of whether they are true in any sense. Finally, the MDL

1Actually, I would consider sensor inputs to be the most elementary symbols.
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principle dictates that we should evaluate models by their usefulness at de-
scribing observations. This fits well with evolutionary theories on how human
intelligence may have evolved.

It would seem a formidable engineering task to construct useful models for
different domains. We might find consolation, however, in realising that
much work has already been done. After all, this is the process more widely
known as the conduction of science. It is mostly the elementary symbols
that have traditionally been neglected. In addition, our attempts to model
the world can be greatly expedited by building an appropriate cognitive
toolkit. We should develop recipes of the kind: if I assume this and that
about the behaviour of lower-level symbols, then such-and-such a model will
describe that behaviour efficiently. Identification of the momentum problem
contributes to the construction of these recipes. It shows that it may not
always be assumed that a single model describes an observed phenomenon
best at all numbers of observations. This is my first contribution to tackling
one of the fundamental problems in AI.
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CHAPTER 1

Introduction to

MDL and Bayesian Prediction

The first section of this chapter introduces the Minimum Description Length
(MDL) principle, which equates learning from a set of observations with
finding a short description of the observations. The MDL principle is for-
malised using codes, which are closely related to probability distributions.
Codes, probability distributions and their relationship will be introduced in
Section 1.2. Section 1.3 introduces models as possible explanations for the
observations. In the presence of multiple models, the MDL principle can be
applied to the tasks of prediction and model selection. The resulting proce-
dures are presented in Section 1.4 and also given an interpretation from the
perspective of Bayesian statistics.

1.1 Minimum Description Length Principle

One of the most important parts of learning is to generalise from specific
observations to general descriptions. We will call a set of observations the
data. The Minimum Description Length principle states that learning is to
find a short description of the data. This statement is the result of a two-
step argument that goes: learning is to find regularity in the data; and any
regularity in the data can be used to give a shorter description of the data.
The MDL principle then follows directly.

1



2 Introduction to MDL and Bayesian Prediction

We take the first part of the argument as a task description: find as much
regularity in the data as possible. The second part, the duality between reg-
ularity and short descriptions, will now be illustrated by an example adapted
from [Grünwald et al., 2005]. Consider the following two sequences of coin
flips by a swindler, who may have tampered with the outcomes. H denotes
heads and - denotes tails :

---H---H---H---H---H ... ---H---H---H---H---H---H---H

-HHH-H--HH-H--H--HH- ... H-H-HHH-H-HHH-HH---H-HH---H-

Each of the sequences is 1000 flips long, but to save print we have only
listed the start and the end of each sequence. The first sequence consists
of 2500 repetitions of the part “---H”. To write it out in full requires 1000
bits, one bit per coin flip. It might have been described much shorter in any
general-purpose programming language by a program like:

for i in 1 to 2500; do print "---H"; end

Clearly this program can be described in far less than 1000 bits; it exploits
the regularity in the sequence to describe it using less bits. The second
sequence has been generated by tosses of a fair coin and contains no useful
regularity. The shortest program to describe it will look like:

print "-HHH-H--HH-H--H--HH- ... H-H-HHH-H-HHH-HH---H-HH---H-"

This program cannot use any regularity to give a shorter description of the
sequence. It is therefore of approximately the same length as the original
sequence plus some minor syntactic overhead.

The exact length of the programs depends on the specifics of the program-
ming language that is used1. What has here been called a programming
language corresponds to what will be called a code in the remainder of this
thesis, although codes will often be highly specialised rather than general-
purpose; a program will be called a codeword ; and the length of a unique
program to generate a specific data sequence will be referred to as the code-
length for the data. All results in this thesis concern the relative merit and
construction of codes. Codes will be compared by the codelength they as-
sign to the data. Codes, codelengths and related concepts will be formally
introduced in the next section.

1We view a programming language as a Turing machine, a program as its input and
the data as its output.
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1.2 Codes and Probability Distributions

Codelength functions are closely related to probability distributions. Before
formalising the concept of codes, we therefore first introduce probability dis-
tributions. The relationship between codelength functions and distributions
depends on the Kraft inequality, which we will state next. We will then give
an interpretation of codelength as accumulated predictive loss that will be
used throughout this thesis and finally conclude this section by introduc-
ing universal codes, which arguably may be considered the most important
concept in MDL.

1.2.1 Probability Distributions

A probability distribution is a mathematical construct that satisfies certain
formal properties. It is often interpreted as a statement about the relative
frequency of the outcomes of a nondeterministic experiment if the exact same
experiment were repeated infinitely many times. The relative frequency as-
signed to a specific outcome is called the probability of that outcome. We will
now state the most important formal properties of probability distributions,
using the related notions of events and outcome spaces.

An event is a set of possible outcomes of a nondeterministic process. The set
of all possible outcomes, X , is called the outcome space. Events therefore
correspond to subsets of X . Let P(X ) denote the power set of X . Then
a probability distribution P : P(X ) → [0, 1] maps events to their probabil-
ity. The probability that some outcome will occur must always be one, i.e.
P (X ) = 1, and the probability that no outcome will occur must be zero, i.e.
P (∅) = 0. In addition, the probability of any two disjoint events equals their
joint probability. That is, for any two events E1 and E2 such that E1∩E2 = ∅,
it holds that P (E1 ∪ E2) = P (E1) + P (E2).

An example of a probability distribution is the distribution that considers all
outcomes equally likely. This distribution is called the uniform distribution.
It assigns the same probability P (x) = 1/|X | to each outcome x ∈ X .

If it is known that the outcome of an experiment will be one of the outcomes
in event E , then the probability of any outcome that is not in E must be
zero and the probability of the other outcomes is normalised such that the
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total probability sums to one again. The resulting probability distribution is
called conditional on E and the probability that it assigns to any event E ′ is
denoted by P (E ′|E). Thus conditional probability is defined as

P (E ′|E) :=
P (E ′ ∩ E)

P (E)
. (1.1)

Frequently, events can conveniently be described using random variables. A
random variable X : X → R maps individual outcomes to the real numbers.
A value x for X therefore corresponds to an event. If E denotes this event,
then we may write P (X = x) equivalently with P (E). When no confusion is
possible we abbreviate P (X = x) to P (x).

Data

A series of n observations that constitute the data may more formally be
considered outcomes from a series of n experiments. We will call the number
of outcomes n the sample size. Suppose we would like to describe n obser-
vations, then we might consider outcomes x1, . . . , xn from outcome spaces
X1, . . . ,Xn or, equivalently, a single composite outcome xn := (x1, . . . , xn)
from the joint outcome space X n := X1 × · · · × Xn. Suppose further that
we would like to define a probability distribution for any sample size. Then
we may consider a sequence of related probability distributions P 1, P 2, . . .
on outcome spaces X 1,X 2, . . . . Any two distributions P n and P n+1 are
called compatible if the marginal distribution for P n+1 restricted to n out-
comes is equal to P n. That is, for all xn ∈ X n it needs to hold that
P n(xn) =

∑

xi+n∈Xn+1
P n+1(xn, xn+1). If every two consecutive distributions

in the sequence are compatible, then the sequence of probability distribu-
tions is called a (probabilistic) source [Grünwald et al., 2005]. Whenever the
sample size n is clear from context we will write P (xn) instead of P n(xn).

Any probabilistic source defines a unique infinite sequence of conditional
distributions P1(x1), P2(x2|x1), . . . , Pn(xn|xn−1), . . . by

Pn(xn|xn−1) :=
P n(xn)

P n−1(xn−1)
. (1.2)

It follows by compatibility of P n and P n−1 that the probabilities of Pn sum to
one:

∑

xn+1
Pn(xn+1|xn) = 1. Conversely, any such sequence defines a unique
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probabilistic source by repeated application of the definition of conditional
probability:

P n(xn) =
n
∏

i=1

Pi(xi|xi−1). (1.3)

Compatibility is verified by

∑

xn+1

P n+1(xn+1) =
∑

xn+1

n+1
∏

i=1

Pi(xi|xi−1)

=
n
∏

i=1

Pi(xi|xi−1)
∑

xn+1

Pn+1(xn+1|xn)

=
n
∏

i=1

Pi(xi|xi−1)

= P n(xn),

which shows that these distributions form a source.

Suppose that the data, xn, are distributed according to P n in source P .
Then we say that the data have been sampled from P and that P is the
generating source for the data. The data may be sampled sequentially. For
instance, if we sample consecutive outcomes x1, x2, . . . , xn in a time-series
according to P1(x1), P2(x2|x1), . . . , Pn(xn|xn−1), then by Equation (1.2) the
joint outcomes xn are distributed according to P n.

Empirical Distribution

Given a series of n observations xn ∈ X n we may construct the empirical
distribution Pxn of xn over outcomes y ∈ X , which sets the probability of
observing any y equal to the relative frequency of y in xn. Pxn is an element
of the unit simplex ∆m in R

m and is defined as

Pxn(y) :=
ny(x

n)

n
,

where ny(x
n) denotes the number of occurrences of y in xn. The unit simplex

in R
m is defined by

∆m :=

{

(y1, . . . , ym)T ∈ R
m :

m
∑

i=1

yi = 1, y1, . . . , ym ≥ 0

}

.
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Expectation

We will frequently be interested in typical values of some function f(X)
of a random variable X that is distributed according to distribution P . A
common way to summarise the value of f(X) on typical values of X is by
the expected value of f(X) under P , which is defined by

EX∼P [f(X)] :=
∑

x∈X

P (x) · f(x)

and may be interpreted as a weighted average of the value of f(X) according
to P . We will always abbreviate the subscript to P whenever X is clear from
context.

1.2.2 Codes

The Minimum Description Length principle concerns the length of descrip-
tions. We capture the notion of descriptions using codes and codelengths. A
code may be interpreted as a strategy for transmitting the data to another
party over a binary communication channel. Formally, a code C : X → D∗

for random variable X is defined as a one-to-one mapping from X to D∗,
where X is the outcome space for X and D∗ is the set of finite strings of
symbols from the alphabet D. We use C(x) to denote the codeword assigned
by code C to outcome x ∈ X . Each codeword is a string in D∗. An alphabet
D of size D is called D-ary. We will assume throughout this thesis that D
is binary (2-ary). Without loss of generality we furthermore assume that
D = {0, 1}.

To connect to the terminology from Section 1.1 we note that outcomes of
the random variable X correspond to the sequences of coin flips in the ex-
ample of that section. If the data consist of n observations we will also let
xn := x1, . . . , xn denote outcomes from a compound random variable that
will be written Xn. Individual observations will then be called outcomes.
n is one thousand for the sequences in the previous example. What is here
called a code corresponds to what has previously been called a programming
language, except that we require each possible sequence of outcomes to have
only a single corresponding program. Codewords correspond to the previous
programs.
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In this thesis we restrict ourselves to prefix codes, which are codes such that
no codeword is a prefix of any other codeword [Cover and Thomas, 1991].
The codewords for prefix codes are self-delimiting. This enables us to code
a sequence of outcomes by concatenating the codewords for the individual
outcomes without the need for any special symbol to separate codewords. In
the following, we will always use the term code to refer to a prefix code.

A function LC that maps outcomes x to the length of their codeword C(x),
will be called a codelength function and we will call LC(x) the codelength
assigned to x by code C. When C is clear from context, we sometimes omit
the subscript and write L(x) instead of LC(x). The MDL principle implies
that we should compare codes by the codelength they assign to the data. In
fact, it is only interested in codelength. The actual codes, as long as they
exist, are of no importance. From the MDL perspective a code is obviously
inefficient if there exists a code that assigns shorter codelength to at least one
outcome and the same codelength to all other outcomes. A code that is not
obviously inefficient in this way is called complete. To be precise, a code C is
complete if no other code C ′ exists such that for all x ∈ X , LC′(x) ≤ LC(x)
while for at least one x ∈ X , LC′(x) < LC(x) [Grünwald et al., 2005].

Fixed-Length Codes

A code that assigns the same codelength log |X | — we always take the loga-
rithm to base 2 — to all outcomes is called a fixed-length code. For instance,
for outcome space X = {a, b, c, d}, |X | = 4, the following code C would be
fixed-length for outcomes x ∈ X :

x a b c d
C(x) 00 01 10 11

Fixed-length codes are worst-case optimal in the sense that all non-fixed-
length codes assign longer codewords to at least one outcome. To see this
for the previous example consider a non-fixed-length code that would assign
codeword 0 to outcome a. Then by the prefix condition on codes, this code
would be prevented from using codewords 00 and 01. It would therefore have
to use codewords starting with 1 to code outcomes b, c and d. If it were to
use 1 itself as a codeword, then by the prefix condition it would be prevented
from assigning any other codewords. Therefore 1 cannot be a codeword in
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this code. But then only two codewords starting with 1 of length two remain
to code a, b and c. Therefore by necessity at least one of these outcomes
would have to be assigned a codeword of length at least 3, which is longer
than its codeword in the fixed-length code above.

1.2.3 Kraft Inequality

Codelength functions and probability distributions are closely related: for
any probability distribution P a so-called Shannon-Fano code with code-
lengths L(xi) can be constructed such that L(xi) = d− log P (xi)e and vice
versa. The codelengths are rounded up, because they are restricted to integer
values by definition. No rounding is required when going from codelengths
to probabilities. The exact correspondence between codes and probability
distributions is expressed by the Kraft inequality [Cover and Thomas, 1991],
which states:

Theorem 1.2.1 For any finite number of codewords C(x1), . . . , C(xm) that
form a code, the corresponding codelengths L(x1), . . . , L(xm) must satisfy
the inequality

m
∑

i=1

2−L(xi) ≤ 1.

Conversely, given any set of codelengths L(x1), L(x2), . . . , L(xm) that satisfy
this inequality, there exists a code with these codelengths.

The probabilities P (xi) for any probability distribution P sum to one. There-
fore the set of codelengths L(xi) = d− log P (xi)e satisfy the Kraft inequality:

m
∑

i=1

2−d− log P (xi)e ≤
m
∑

i=1

2log P (xi) =
m
∑

i=1

P (xi) = 1.

It follows that a code with codelengths L(xi) = d− log P (xi)e can be con-
structed for any P .

Conversely, for any code with codelengths L(xi) a corresponding probability
distribution P can be constructed with probabilities P (xi) = 2−L(xi). The
Kraft inequality then ensures that the sum of the probabilities P (xi) will
not exceed one. If the sum of the probabilities of P is less than one, then



Codes and Probability Distributions 9

P is called defective. A defective distribution may be viewed as an ordinary
distribution that assigns some of its probability to an imaginary outcome ã
that will never be observed. Defective distributions are related to inefficiency
in codes. To be precise, it can be proved that a code with codelengths L(xi)
is complete if and only if the corresponding distribution with probabilities
P (xi) = 2−L(xi) is not defective [Grünwald, 2007].

In the discussion above codelength functions and probability distributions
are not placed on the same footing. If we start with codelengths L(xi), then
an exactly corresponding distribution with probabilities P (xi) = 2−L(xi) can
always be constructed; however, if we start with a distribution, then the
corresponding codelengths − log P (xi) must be rounded up to the nearest
integer. This asymmetry can be removed by dropping the integer requirement
for codelengths.

1.2.4 Non-integer Codelengths

To get an exact correspondence between probabilities and codelengths, we
would like to remove the requirement that codelengths be integers. As argued
extensively by Grünwald [2007], who calls non-integer codelengths idealised
codelengths, removing this requirement has many advantages and very few
disadvantages. In the remainder of this thesis we will therefore drop the in-
teger requirement for codelengths and use idealised codelengths throughout.
For completeness we will now present three arguments to support our posi-
tion. The first two are from [Grünwald, 2007]. The third is based on [Dawid,
1992b].

Rounding has Negligible Influence on Codelength

Consider a code with codelengths L(xi) = d− log P (xi)e for outcomes xi ∈ Xi.
Then the prefix property guarantees that multiple outcomes in a sequence can
be coded by concatenating codewords: L(xn) =

∑n
i=1 L(xi). It would appear

at first sight that the increase in codelength due to rounding accumulates.
We might think that the average codelength per outcome is given by

L(xn)

n
=

∑n
i=1 d− log P (xi)e

n
.
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However, the rounding can be spread out over all outcomes by viewing xn

as a single outcome from the outcome space X n. Then applying the Kraft
inequality to L(xn) gives

L(xn)

n
=

d− log
∏

P (xi)e
n

<
1

n
+

∑− log P (xi)

n
.

The influence of rounding on the average codelength per outcome decreases
rapidly with the length of the sequence.

Invariance to Alphabet Size

Hitherto we have assumed binary codewords. We might however with equal
validity have chosen a ternary alphabet, or any D-ary alphabet for that
matter, taking the logarithm not to base 2 but to base D where applicable.
It is easy to see that the effect of rounding can be very different depending on
the alphabet size D that is chosen. Compare for instance an outcome a with
probability P (a) = 1

8
. In the binary alphabet rounding would not influence

the outcome and its codelength would be L2(a) =
⌈

− log(1
8
)
⌉

= d3e = 3. In
the ternary alphabet, however, its codelength would be L3(a) =

⌈

log3(
1
8
)
⌉

≈
d1.89e = 2, a rounding-off effect of nearly 0.11 ternary bits.

Suppose we remove the restriction to integer codelengths. Then for all pos-
sible outcomes a the ratio between codelengths under distinct alphabet sizes
D1 and D2 is the same and depends only on the sizes of the alphabets:

LD1(a)

LD2(a)
=

− logD1
P (a)

− logD2
P (a)

=
− ln P (a)/ ln D1

− ln P (a)/ ln D2

=
ln D2

ln D1

.

With the integer requirement, rounding-off effects may be different for dif-
ferent alphabet sizes and no such invariant relationship holds.

Distributions are their own Optimal Codes

Suppose the data are generated by sampling from a distribution P . That
is, we assume that they are generated by a procedure that would generate
each sequence of observations xn with relative frequency going to P (xn) if
it were repeated infinitely many times. Alternatively, and perhaps more
appropriately from an MDL perspective, we may view sampling from P as
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assigning relative importance P (xn) to any sequence xn. Then the code C
with codelengths LC(X) = − log P (X) is optimal to code the data in the
sense that it will in expectation and with high probability assign shortest
codelength to the data among all possible codes. To be precise, the expected
codelength

EP [LC(X)] :=
∑

x∈X

P (x) · LC(x) (1.4)

is minimised if LC(X) = − log P (X) [Dawid, 1992b]; and the probability
that any other code C ′ achieves significantly shorter codelength is bounded
by

P (− log P (X) ≥ LC′(X) + c) ≤ 2−c with c > 0, (1.5)

which is exponentially small in the number of bits c that the alternative
code C ′ should gain [Dawid, 1992b]. The optimality for P of the code with
codelengths − log P (X) strongly ties the two together. This is another reason
to drop the requirement that codelengths be restricted to the integers.

1.2.5 Kullback-Leibler Divergence

Suppose the data X are distributed according to P1. Then the expected
number of additional bits needed when coding the data with a code corre-
sponding to distribution P2 is called the Kullback-Leibler divergence. The
Kullback-Leibler divergence from P1 to P2 is defined as

D(P1‖P2) := EP1

[

log
P1(X)

P2(X)

]

= EP1 [− log P2(X) − [− log P1(X)]] .

Based on continuity arguments, we use the convention that 0 log 0
P2(x)

= 0

and P1(x) log P1(x)
0

= ∞ for P1(x) 6= 0 [Cover and Thomas, 1991]. It can
be shown that D(P1‖P2) ≥ 0 and that D(P1‖P2) = 0 if and only if P1 =
P2. Kullback-Leibler divergence admits several different interpretations in
information theory and statistics [Clarke and Barron, 1990]. For instance, it
is sometimes interpreted as a measure of the difference between P1 and P2.

1.2.6 Codelength as Accumulated Predictive Loss

Data that arrive sequentially at intervals are called time-series data. Sup-
pose we observe a sequence of data x1, x2, . . . , xn in a time-series and after
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each new observation our task is to predict the next observation. In other
words, at each time-step n we have to predict xn+1 given all previous ob-
servations x1, . . . , xn = xn. Let us express our strategy for prediction as
conditional probability distributions P (·|xn) over Xn+1, the outcome space
for xn+1. Then a common way to measure the success of our consecutive
predictions is by their log loss [e.g. Good, 1952]. The log loss also arises as a
natural measure of success in different settings such as sequential gambling
[Kelly, Jr., 1956; Barron, 1998]. The log loss of prediction P (·|xn) is given
by − log P (xn+1|xn) if xn+1 is the next observation that actually occurs. We
will refer to the log loss of a distribution that predicts the next outcome as
predictive (log) loss.

We introduce C(xn+1|xn) as new notation to denote a conditional code for
outcome xn+1 that depends on the previous outcomes xn and let the corre-
sponding codelengths be denoted by LC(xn+1|xn).

The predictive log loss equals the codelength of a code with conditional code-
lengths LC(xn+1|xn) = − log P (xn+1|xn). By repeated application of Equa-
tion (1.1) the accumulated predictive loss over the first n observations turns
out to be equal to the total codelength of a code C ′ over n outcomes, where
C ′ is completely defined by the predictive strategy being used:

n
∑

i=1

− log P (xi+1|xi) = − log
n
∏

i=1

P (xi+1|xt)

= − log P ′(xn)
n
∑

i=1

LC(xi+1|xi) = LC′(xn). (1.6)

We call Equation (1.6) the sequential decomposition of codelength. By the
equality between conditional codelength and predictive loss, it implies that
the codelength of a sequence of n observations can be viewed as the accumu-
lated log loss of predicting these observations in a time-series.

In addition to the sequential decomposition of codelength for individual se-
quences we will now define the sequential decomposition of expected code-
length. Suppose the data are generated by sampling successive outcomes
x1, x2, . . . from a sequence of probability distributions P1, P2, . . . , where each
outcome xi is sampled according to Pi and each Pi is allowed to depend on
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the outcomes generated by its predecessors P1, . . . , Pi−1 in the sequence. This
is the setting of all examples that will be presented in this thesis. Then

EP1,...,Pn
[LC(Xn)] = EP1,...,Pn

[

n
∑

i=1

LC(Xi|X i−1)

]

=
n
∑

i=1

EP1,...,Pn
[LC(Xi|X i−1)]

=
n
∑

i=1

EP1,...,Pi
[LC(Xi|X i−1)]. (1.7)

We call Equation (1.7) the sequential decomposition of expected codelength.
By the equality between conditional codelength and predictive loss, it implies
that the expected codelength of a sequence of n observations can be viewed
as the accumulated expected log loss of predicting these observations in a
time-series.

By the equivalence between the (expected) codelength of a sequence of ob-
servations and the (expected) accumulated log loss of sequentially predicting
them, it is justified to use these descriptions interchangeably. In the remain-
der of this thesis we will therefore freely switch between them whenever it
facilitates our presentation.

1.2.7 Universal Codes

Suppose we are given any countable set of codes C = {C1, C2, . . . } with code-
length functions that correspond to distributions P = {P1, P2, . . . }. Then it
is possible to construct a so called universal code CC for C that assigns nearly
as short codelength to any outcome x as the code in C that assigns shortest
codelength to x. The probability distributions that correspond to univer-
sal codes are called universal models. The use of universal models may be
considered the main characterising feature of the MDL principle [Grünwald
et al., 2005]. There exist many types of universal models. In this thesis
we frequently use so-called Bayesian universal models to construct Bayesian
universal codes. A Bayesian universal model PP is a mixture of the distri-
butions in P according to some distribution wP over the elements of P that
assigns positive probability to all of them. PP is defined by

PP(x) :=
∑

i

wP(Pi)Pi(x). (1.8)
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It can be verified that PP assigns probability one to the entire outcome space
by

∑

x

PP(x) =
∑

x

m
∑

i=1

wC(Pi)Pi(x)

=
m
∑

i=1

wC(Pi)
∑

x

Pi(x)

=
m
∑

i=1

wC(Pi)

= 1.

By the Kraft inequality it is possible to construct CC such that LCC(x) =
− log PP(x) for any outcome x. Now the difference in codelength between
CC and the best code Ca in C can be bounded by:

LCC(x) = − log PP(x)

= − log
∑

i

wP(Pi)Pi(x)

≤ − log wP(Pa)Pa(x)

= − log wP(Pa) + LCa
(x).

Therefore CC assigns at most − log w(Pa) more bits to the data than the best
code Ca in C. We will frequently design codes for n consecutive outcomes
xn = x1, . . . , xn. In this case the codelength LCa

(xn) will be large for all xn.
The constant − log w(Pa) bits overhead for CC, which do not depend on n,
will then be negligible relative to LCa

(xn).

In many cases CC is not in C. We therefore might wonder whether it ever
assigns shorter codelength to any outcome x than the best code for x in C.
However, by

LCC(x) = − log
∑

i

wP(Pi)Pi(x)

≥ − log
∑

i

wP(Pi) max
a

Pa(x)

= − log max
a

Pa(x)

= min
a

− log Pa(x)



Models 15

it is proved that this is not possible. We conclude that the codelength LCC(x)
behaves approximately like the codelength of the best code in C.

For uncountable sets C, Bayesian universal codes can be constructed in a
similar way to the countable case. However, the additional codelength they
assign to the data compared to the best code in C cannot be bounded by
a constant that does not depend on n. Under regularity conditions on the
sets, however, it can be bounded by O(log n). As LCa

(xn) will usually grow
linearly in n, for large n this may still be considered relatively small.

In some cases we may prefer a universal code that explicitly identifies a
single best element Pa in P . For countable P this is realised by two-part
codes. Given a distribution wP over P , a two-part code first codes the index
of Pa in − log wP(Pa) bits — its first part — and then codes the data using
Pa in − log Pa(x

n) bits — its second part. Thus its codelength is given by

L(x) = min
a

{− log wP(Pa) + LCa
(x)} .

Note that the choice of wP biases the code towards certain Pa. Two-part
codes are less efficient than Bayesian universal codes. If explicit identification
of Pa is not required, we therefore prefer Bayesian universal codes.

1.3 Models

It is common in science to consider multiple explanations for the same phe-
nomenon. We call each explanation M ∈ M a model. There appears to
be no standard terminology for the set M of models. We will call M the
model set. Models are formalised as (possibly uncountably infinite) sets of
probabilistic sources over the same (joint) outcome spaces. In particular we
restrict ourselves to parametric models

M := {Pθ : θ ∈ Θ ⊆ R
d},

which are models M such that each probabilistic source Pθ in the model is
indexed by a unique parameter θ in d-dimensional parameter space Θ. We
assume that the model set M consists of countably many models containing
sources over the same outcome spaces. In all situations considered in this
thesis the model set will contain at most three models.
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1.3.1 Bernoulli Models

To illustrate the notion of a model, we will now present two models that
contain Bernoulli distributions. The Bernoulli distribution on single binary
outcomes x is defined as

Pθ(x) := θx · (1 − θ)1−x with x ∈ X = {0, 1},

where θ defines the probability of observing a one: Pθ(X = 1) = θ. If a
single distribution is extended to multiple outcomes by taking product dis-
tributions, then the resulting sequence of distributions is always compatible.
A Bernoulli probabilistic source can therefore be defined by taking product
distributions:

Pθ(x
n) := θn1(xn) · (1 − θ)n0(xn),

where n1(x
n) and n0(x

n) denote the number of ones and the number of zeroes
in xn respectively. It holds for all xn that n1(x

n) + n0(x
n) = n.

Our first example is the Bernoulli model, which is one of the most well-known
models. We define it as

M1 := {Pθ : θ ∈ Θ = (0, 1)},

where Pθ is the Bernoulli source based on the Bernoulli distribution with
Pθ(X = 1) = θ. It should be noted that the Bernoulli model is usually
defined with Θ = [0, 1]. In our modified definition the Bernoulli model is
an exponential family whereas in the common definition it is not. The ex-
ponential families are a group of models that share many useful regularity
properties [Barndorff-Nielsen, 1978; Grünwald, 2007]. They can be param-
eterised in a certain canonical form. To discuss them more extensively lies
outside the scope of this thesis. We will therefore only state their regularity
properties without discussion when required, together with a reference to
more information.

Our second example of a model contains only a single Bernoulli source and
does not have a standard name. We will refer to it as the Single Bernoulli
model. It is defined as

M0 := {P0.6},
where P0.6 is the Bernoulli source Pθ with θ = 0.6. We will use both Bernoulli
models in our examples. The choice of P0.6 in the Single Bernoulli model
is arbitrary to the extent that we wished to avoid special distributions —
such as the symmetric distribution P0.5, for instance —, which might have
introduced more regularity than desired into our results.
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1.4 MDL and Bayes

The MDL principle can be applied to the problem of predicting the next
unobserved outcome xn+1 given data xn in the presence of multiple models.
In addition it can be applied to select a single model that may be considered
the best explanation for xn among all models in the model set. The former
we will call the task of prediction, the latter the task of model selection.
Model selection is sometimes also called hypothesis testing [Leamer, 1978].
In this thesis we will focus on prediction. However, as the tasks are closely
related [Chickering and Heckerman, 2000], our results also have implications
for model selection. We will point these out in Section 4.3.

Applying MDL to prediction or model selection amounts to constructing a
single appropriate code to describe the data. We will compare standard
choices for this code to an alternative called the Switch-Point procedure,
which will be presented in Section 2.2. For these standard choices the re-
sulting procedures can also be given an interpretation from the so-called
Bayesian perspective. To improve upon them therefore means to improve
on the Bayesian approach as well. For the convenience of Bayesian readers
we include a brief introduction to the Bayesian approach to prediction and
model selection and will try to point out when our results carry over. For ease
of presentation we will now first introduce the Bayesian view on prediction
and model selection; then we will do the same for MDL; and finally we will
connect the resulting procedures. We would like to emphasise at this point
that MDL and Bayesian reasoning are very different in spirit and certainly
do not always lead to the same procedures.

1.4.1 Bayes

Given data xn, each probabilistic source Pθ ∈ M defines a probability distri-
bution P n

θ on the data. From one Bayesian point of view each P n
θ in a model

represents a possible explanation for the data. A model in this view is a
mixture of the distributions {P n

θ : Pθ ∈ M} weighted by a prior distribution
w over θ that does not depend on n. Thus each model defines a probability
distribution

P n
M(xn) =

∫

θ∈Θ

Pθ(x
n)w(θ) dθ (1.9)
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over the data. Compatibility of the universal models P 1
M, P 2

M, . . . for different
sample sizes follows by compatibility of the individual sources in the model:

∑

xn+1

P n+1
M (xn+1) =

∑

xn+1

∫

θ∈Θ

P n+1
θ (xn+1)w(θ) dθ

=

∫

θ∈Θ

∑

xn+1

P n+1
θ (xn+1)w(θ) dθ

=

∫

θ∈Θ

P n
θ (xn)w(θ) dθ

= P n
M(xn). (1.10)

Therefore PM is a probabilistic source.

From an MDL perspective, each distribution P n
M is a Bayesian universal

model (see Section 1.2.7) for the codes corresponding to the distributions P n
θ .

In fact, Bayesian universal models derive their name from their application in
Bayesian statistics. As we will see in Section 1.4.2, however, their usefulness
is not limited to Bayesian statistics.

Subjective Bayesian Priors

w(θ) may be interpreted from a subjective Bayesian point of view as the
subjective degree of belief that a probabilistic source Pθ represents the true
source for the data. In the subjective view different researchers may use
different w depending on their past experiences and personal beliefs. In many
practical situations, however, detailed knowledge of degrees of belief about
the source for the data is unavailable, for instance because it cannot feasibly
be obtained from domain experts. Or worse, it may be known that none of
the probabilistic sources in the model corresponds to the real source for the
data as is the case, for example, when hidden Markov models are used to
model human speech in speech recognition. Then the degree of belief in each
probabilistic source is zero! In these cases w can still be given an objective
Bayesian interpretation as a pragmatic choice that aims for the Bayesian
methods to perform well on a given task [Berger and Pericchi, 2001].



MDL and Bayes 19

Objective Bayesian Priors

From a subjective Bayesian point of view the prior w is fully specified by
existing prior belief. In the objective Bayesian view, however, there exists
no obvious default choice. In this case Jeffreys’ prior [Grünwald et al., 2005]
may be used, which has a number of appealing properties that might be
expected from a prior representing ignorance. For instance, it is invariant
under reparameterisation of the model. Jeffreys’ prior is defined as

wJeffreys(θ) :=

√

|I(θ)|
∫

θ∈Θ

√

|I(θ)| dθ
,

where I(θ) represents the Fisher information matrix and |I(θ)| denotes its
determinant. The (i, j)-th element of I(θ) is given by

Iij(θ) := lim
n→∞

1

n
Eθ

[

− ∂2

∂θ′i∂θ′j
ln Pθ′(X

n)

]

θ′=θ

(1.11)

for i, j = 1, . . . , d where d denotes the dimensionality of the parameter space.
If a model contains only a single source Pθ, then the Fisher information
matrix is undefined. In this case we will assume that wJeffreys(θ) = 1, which
is the only possible prior in that case.

Prediction

The task of prediction requires to predict the next outcome xn+1 given data
xn. Let P n

Bayes denote the Bayesian universal model for n outcomes given
some prior wM over the models in the model set. Then the sequence PBayes =
P 1

Bayes, P 2
Bayes, · · · forms a probabilistic source by the same reasoning as

in (1.10). From a Bayesian perspective the next outcome should now be
predicted according to the conditional distribution PBayes(xn+1|xn). By (1.8)
and (1.2) it follows that PBayes(xn+1|xn) is given by

PBayes(xn+1|xn) =
PBayes(x

n+1)

PBayes(xn)

=

∑

M∈M
PM(xn+1)wM(M)

∑

M′∈M
PM′(xn)wM(M′)

=
∑

M∈M

PM(xn+1|xn)
PM(xn)wM(M)

∑

M′∈M
PM′(xn)wM(M′)

, (1.12)
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where PM has been defined in (1.9) and is itself a weighted average. The
conditional distributions PM(xn+1|xn) are computed by (1.2). Prediction
according to PBayes(xn+1|xn) is called Bayesian model averaging [Hoeting
et al., 1999; Clyde, 1999].

Model Selection

Given prior wM over the models, one way to explain the data using Bayesian
inference is by selecting the model with maximum posterior probability:

arg max
M∈M

wM(M|xn) = arg max
M∈M

PM(xn)wM(M)
∑

M′∈M
PM′(xn)wM(M′)

= arg max
M∈M

PM(xn)wM(M). (1.13)

This is called Bayes factors model selection [Kass and Raftery, 1995; Berger
and Pericchi, 2001]. There are other methods as well.

1.4.2 Minimum Description Length

MDL views each Pθ ∈ M as a code that assigns codelength − log P n
θ (xn) to

data xn. As MDL is only interested in codelengths, it does not matter which
actual code realises these codelengths as long as one exists. From an MDL
point of view, each code describes the data. It can be more or less efficient
as measured by its codelength for the data, but there is no notion of whether
it is true in any sense. In the MDL view a model M is interpreted as a set
of codes for the data that represents the conjecture that one of them will
efficiently describe the data. It therefore constructs a universal model P n

M

for M for each sample size n. We will let PM := P 1
M, P 2

M, · · · denote the
resulting sequence of universal models. Note that PM is only a probabilistic
source if the universal models in PM are compatible (see page 4), which is not
true for all possible choices of universal models. We will first discuss choices
for PM and then describe the MDL approach to combining the models in
prediction and model selection.
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Optimal Universal Model

In MDL the efficiency of a universal model on a given data sequence xn rela-
tive to some set of codes is measured using its regret, which is the difference
in codelength on xn with the best code in the set. Thus the regret on xn of
a universal model PM relative to model M is defined as:

R(PM, xn) := − log PM(xn) − min
Pθ∈M

{− log Pθ(x
n)}.

PM may have small or even negative regret on some data sequences xn, but
high regret on other sequences. To avoid assumptions about which data
will actually be observed, PM should have small regret on all possible data
sequences. Its overall performance is therefore measured by its worst-case
regret

Rmax(PM) := max
xn∈Xn

R(PM, xn).

Under regularity conditions on M, it can be shown that for each sample size
n there exists a unique universal model P n

nml that minimises Rmax [Grünwald
et al., 2005]. P n

nml is given by

P n
nml(x

n) :=
maxPθ∈M P (xn)

∑

yn∈Xn maxPθ∈M Pθ(yn)
.

It is called the normalised maximum likelihood (NML) distribution and
achieves the same regret,

R(P n
nml, x

n) = log
∑

yn∈Xn

max
Pθ∈M

Pθ(y
n),

on all sequences xn. Unfortunately, the distributions P 1
nml, P 2

nml, · · · are
not compatible, although for large sample sizes they are almost compatible.
Therefore Pnml is not a probabilistic source and does not define a sequence
of conditional distributions that can be used for the prediction of the next
unobserved outcome. In addition it often cannot be computed efficiently.
Under regularity conditions on M that will always be satisfied in this thesis,
however, Pnml is approximated to order o(1) by the Bayesian universal models
PM in (1.9) with Jeffreys’ prior [Grünwald et al., 2005]. We will therefore
always use Bayesian universal models based on Jeffreys’ prior to approximate
Pnml.
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Prediction

MDL prediction amounts to the construction of a single conditional code
CMDL for the next outcome xn+1 given data xn. This code is constructed by
combining the codes for the models. It is based on the sequence of Bayesian
universal models PMDL = P 1

MDL, P 2
MDL, · · · for the set {PM : M ∈ M} that

are defined by

P n
MDL(xn) :=

∑

M∈M

PM(xn)wM(M) (1.14)

for prior wM(M) over the models. As we have made sure that each PM is
a probabilistic source, it follows by the same reasoning as in (1.10) that the
sequence PMDL is also a probabilistic source. CMDL is now chosen such that
it assigns codelength

LMDL(xn+1|xn) := − log PMDL(xn+1|xn) (1.15)

to the next outcome. By construction the distribution that corresponds to
CMDL(xn+1|xn) is PMDL(xn+1|xn). MDL therefore predicts xn+1 according to
PMDL(xn+1|xn), which by a similar derivation to (1.12) can be computed as

PMDL(xn+1|xn) =
∑

M∈M

PM(xn+1|xn)
PM(xn)wM(M)

∑

M′∈M
PM′(xn)wM(M′)

. (1.16)

Model Selection

In model selection MDL also requires the construction of a single code for the
data that combines the separate codes for the models. This time, however, it
must explicitly identify a single model as the best explanation for the data.
To satisfy this constraint MDL uses a two-part code that first identifies a
single model and then codes the data with the help of that model:

arg min
M∈M

− log wM(M) − log PM(xn). (1.17)

It outputs the model that is thus selected.
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1.4.3 Relating MDL and Bayes

Comparison of (1.12) and (1.16) reveals a close correspondence between MDL
and Bayesian prediction: if the same priors w are used for each model and
the same prior is used for wM(M), then MDL and Bayesian prediction are
equivalent. Furthermore, by monotonicity of the logarithm (1.13) can be
rewritten as

arg max
M∈M

PM(xn)wM(M) = arg max
M∈M

log PM(xn) + log wM(M)

= arg min
M∈M

− log wM(M) − log PM(xn),

which under the same conditions equals Equation (1.17). In this case MDL
and Bayesian model selection are therefore equivalent as well.2

In this thesis we will always use Jeffreys’ prior for w. We will use a uniform
prior wM over the models [e.g. rejoinder in Hoeting et al., 1999]. In this case
(1.12) and (1.16) reduce to

PMDL(xn+1|xn) =
∑

M∈M

PM(xn+1|xn)
PM(xn)

∑

M′∈M
PM′(xn)

,

and Equations (1.13) and (1.17) become equivalent to

arg min
M∈M

− log PM(xn).

1.4.4 Criteria

To compare the performance of MDL and Bayes on prediction to alternative
procedures we will use predictive loss, which we have defined in Section 1.2.6.
By the equivalence of accumulated predictive loss and codelength it is the
most natural loss measure from an MDL perspective. As the observations
are probabilistically generated, the predictive loss of a procedure on a single
outcome is subject to large fluctuations. We will therefore examine the av-
erage predictive loss over (subsequences of) the data or evaluate predictive
loss in probability or in expectation.

2The use of Bayesian universal models in MDL is only justified as an approximation of
the optimal universal model Pnml, which depends on regularity conditions on the models.
Therefore the equivalence between MDL and Bayes does not hold in general.
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In addition to achieving small predictive loss, it is widely regarded as impor-
tant that a procedure be consistent [e.g. Berger and Pericchi, 2001; Grünwald
et al., 2005; Rissanen, 1986b]. We will not use consistency as a performance
measure, but will refer to consistency of MDL in model selection to guide
our intuition in some of our proofs. Roughly speaking, consistency requires
that a model selection procedure selects a model containing the generating
distribution, if such a model exists, with probability going to one as the sam-
ple size goes to infinity. The data may be sampled from a source that is not
in any of the models, however. Or there may not even exist any source such
that the data can meaningfully be said to be sampled from it. In these cases
consistency does not impose any restrictions on model selection procedures.

1.5 Chapter Summary

In this chapter we have introduced the Minimum Description Length (MDL)
principle, which equates learning with finding regularity in the data. As any
regularity can be used to give a shorter description of the data, it concludes
that the goal of learning should be to find a short description of the data. The
MDL principle is formalised using codes. However, it is only interested in the
length of codewords and never in the actual codes. By the Kraft inequality
codelength functions are closely related to probability distributions. In fact,
we have adopted defective distributions and idealised codelengths, which
make the correspondence one-to-one.

MDL may be applied to the tasks of prediction and model selection. In the
presence of multiple models, prediction is the task of predicting the next
outcome xn+1 given data xn and model selection requires to select the best
explanation for the data. The resulting procedures are given by (1.16) and
(1.17), respectively. We use Bayesian universal models based on Jeffreys’
prior for the models, which are compatible approximations of the optimal
NML models. As a consequence these procedures also have a Bayesian in-
terpretation. In Bayesian statistics the log loss is a well-known measure to
evaluate predictive procedures. In this context we call it predictive (log) loss.
We have shown that the accumulated predictive loss over the data may also
be viewed as codelength by the sequential decomposition of codelength. It
is therefore a natural loss measure from an MDL perspective.



CHAPTER 2

The Momentum Problem

In the next section we introduce the momentum problem by a simple example
that will be called the Bernoulli example. It presents a simple scenario involv-
ing two nested models that exhibits the so-called momentum phenomenon. In
Section 2.2 we will introduce the Switch-Point procedure, which is designed
to exploit the momentum phenomenon to improve predictive performance.
Section 2.3 then confirms that the Switch-Point procedure does improve pre-
dictive performance slightly on the Bernoulli example. In the next chapter
we will consider a more complicated example on which the Switch-Point pro-
cedure achieves a larger improvement. We conclude that the momentum
phenomenon should be considered a momentum problem.

2.1 Bernoulli Example

Inspired by Dawid [1984], we consider two meteorologists issuing daily fore-
casts of the “probability of precipitation” for the next day in the same region.
The next day they observe whether any precipitation actually falls and up-
date their predictions accordingly. Each day we decide whether or not to
bring an umbrella to work based on the forecasts by the two meteorologists
and our knowledge of their accuracy on all preceding days.

Suppose that both meteorologists base their predictions on a model for the
probability of precipitation. Then we are faced with a prediction problem

25
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in the presence of multiple models. They may have come up with their
models in different ways. One meteorologist, for instance, may have based
his model on existing meteorologic records of precipitation in a nearby region;
the other may have wanted to avoid any assumptions about the similarity of
the weather between the two regions.

Let us consider a more formal version of this problem on binary data x1, . . . ,
xn that denote the occurrence of precipitation in a time-series. Suppose the
models employed by the two meteorologists are the Single Bernoulli model,
denoted by M0, and the Bernoulli model, denoted by M1, which were in-
troduced in Section 1.3.1. To avoid confusion between the models we will
frequently refer to M1 as the Full Bernoulli model.

We will use Jeffreys’ prior to construct Bayesian universal models for M1 at
each sample size. It is given by

wJeffreys =
θ−

1
2 (1 − θ)−

1
2

π

[Grünwald, 2007]. M0 contains only a single probabilistic source P0.6. By
assumption Jeffreys’ prior therefore assigns all prior probability to P0.6. As
a consequence the resulting universal model for M0 is equal to P0.6 and
achieves zero regret on all sequences. The universal models on any sequence
of n observations xn can now be computed by

PM0(x
n) := 0.6n1(xn) · (1 − 0.6)n0(xn),

and

PM1(x
n) :=

∫ 1

0

θ−
1
2 · (1 − θ)−

1
2

π
· θn1(xn) · (1 − θ)n0(xn) dθ,

where n1(x
n) and n0(x

n) respectively denote the number of ones and the
number of zeroes in xn. We denote the corresponding codelengths by L0(x

n)
and L1(x

n) respectively.

A possible objection to the Single Bernoulli model might be that it is unreal-
istic. Surely in practice the meteorologist considering it would rather model
his assumptions by using the Full Bernoulli model with a strongly peaked
prior around θ = 0.6. This however would not significantly change the ex-
ample; the observation of the momentum phenomenon that will be made
below, would remain unchanged. For simplicity the Single Bernoulli model
is therefore defined as it is.
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Suppose we observe data xn. Then by (1.6) the accumulated predictive loss
of PMDL on xn is equal to − log PMDL(xn). PMDL is a Bayesian universal
model for PM0 and PM1 . As discussed in Section 1.2.7 it therefore behaves
approximately like the model that assigns shortest codelength to xn. To
investigate the behaviour of PMDL it will therefore be most informative to
examine L0(x

n) and L1(x
n). In particular, we are interested in the difference

L1(x
n) − L0(x

n), which a Bayesian would interpret as the odds provided
by the data for the Single Bernoulli model versus the Full Bernoulli model
[Berger and Pericchi, 2001]. If L1(x

n)−L0(x
n) > 0 then the Single Bernoulli

has best predicted the data; otherwise the Full Bernoulli model was the best
predictor.

Let xn be sampled sequentially from Pθ∗ in the Full Bernoulli model. Then
it will be informative to examine how L1(x

n) and L0(x
n) develop with n.

We will therefore depict the difference L1(x
n) − L0(x

n) for all sample sizes
up to some reasonable n. For a first impression we will first investigate the
difference in codelength between the models on typical individual sequences
for various choices of Pθ∗ . Then we will look at the difference in expectation
to gain insight into its overall behaviour.

2.1.1 Results: Codelength on Individual Sequences

Figure 2.1 shows the difference in codelength between the two models on in-
dividual sequences that have been sampled from various generating sources.
We have included many generating sources for ease of comparison with results
in expectation in the next section. They have been sorted by their distance
in the parameter space from the source in the Single Bernoulli model. All
sequences have been generated in a single attempt. Although no strong con-
clusions can be justified based on the properties of probabilistically generated
individual sequences, we do make the following preliminary observation: for
some generating distributions the Single Bernoulli model is the best predictor
on average for small sample sizes and the Full Bernoulli model is the best pre-
dictor on average for large sample sizes. In other words, the best-predicting
model switches with increasing sample size. The effect appears to be larger
for generating distributions that are more similar to the distribution in the
Single Bernoulli model. For each sequence shown in the figure, ten alterna-
tive individual sequences were generated with the same parameter settings.
In all cases our preliminary observation held. We will now make this obser-
vation more precise and argue that it suggests suboptimal behaviour of MDL
and Bayes.
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Consider Figures 2.2(b), 2.2(c), 2.2(d) and 2.2(e), which show sequences sam-
pled from generating distributions in the Full Bernoulli model with parameter
θ∗ equal to 0.55, 0.65, 0.50 and 0.70 respectively. Due to the randomness in
the sampling process for the sequences, the difference in codelength between
the Full Bernoulli model and the Single Bernoulli model exhibits significant
local fluctuations. We do, however, observe a pattern in these figures: in
all cases the difference in codelength first increases to some maximum, and
then continually decreases again. The pattern is absent in Figures 2.1(a),
2.2(f) and 2.2(g), which have been sampled from the distributions with θ∗

equal to 0.60, 0.30 and 0.90 respectively. We call this pattern the momentum
phenomenon. To be precise, let xn be any data sequence and let La(x

n) and
Lb(x

n) denote the codelength assigned to xn by any two models Ma and Mb

respectively. We then say that the momentum phenomenon occurs on xn if
there exist sample sizes n1, n2 with n1 < n2 such that La(x

n1) < Lb(x
n1)−C

and La(x
n2) > Lb(x

n2) for some constant C > 0.

The Single Bernoulli model must have achieved at least C bits shorter code-
length than the Full Bernoulli model on the first n1 observations, but the Full
Bernoulli model must have achieved at least C bits shorter codelength on the
part of the sequence between n1 and n2. That is, the Single Bernoulli was the
best-predicting model on the first n1 outcomes, but the Full Bernoulli model
was the best-predicting model on the outcomes between n1 and n2. We call
the maximum C for which xn exhibits the momentum phenomenon the size
of the momentum phenomenon. The size of the momentum phenomenon is
equal to the maximum number of bits that can be gained by switching be-
tween models at exactly the right sample size. That is, it reflects how much
we might hope to gain by exploiting the momentum phenomenon. Although
we have seen that the momentum phenomenon does not always occur, we
will prove in Section 3.1 that for each size C of the momentum phenomenon
and for each ε > 0 there exist generating distributions in the Full Bernoulli
model such that the size of the momentum phenomenon is at least C with
probability at least 1 − ε.

MDL and Bayes predict approximately (in the sense of page 15) like the
model that best predicts the entire data xn. However, if the best-predicting
model changes over time from the Single Bernoulli model to the Full Bernoulli
model, then it would be better to predict the first part of the data according
to the Single Bernoulli model and the rest of the data according to the Full
Bernoulli model. When this happens, the Full Bernoulli model has to make
up for its initial poor performance before it starts outperforming the Single
Bernoulli model on all data. Meanwhile, MDL and Bayesian predictions still
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resemble the predictions of the old best-predicting model much more closely
than they resemble the predictions of the currently best-predicting model.
This will be illustrated later. We might say that MDL and Bayes have to
overcome their momentum towards the Single Bernoulli model before they
start predicting according to the Full Bernoulli model. This motivates the
naming of the momentum phenomenon.
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(a) θ
∗ = 0.6

Figure 2.1: L1(x
n) − L0(x

n) on sequences xn sampled from the Bernoulli
distribution with P (X = 1) = θ∗ for n = 1, . . . , 2000.
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(b) θ
∗ = 0.55
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(c) θ
∗ = 0.65

Figure 2.1 (cont.): L1(x
n) − L0(x

n) on sequences xn sampled from the
Bernoulli distribution with P (X = 1) = θ∗ for n = 1, . . . , 2000.
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(d) θ
∗ = 0.5
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(e) θ
∗ = 0.7

Figure 2.1 (cont.): L1(x
n) − L0(x

n) on sequences xn sampled from the
Bernoulli distribution with P (X = 1) = θ∗ for n = 1, . . . , 2000.
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(f) θ
∗ = 0.3
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(g) θ
∗ = 0.9

Figure 2.1 (cont.): L1(x
n) − L0(x

n) on sequences xn sampled from the
Bernoulli distribution with P (X = 1) = θ∗ for n = 1, . . . , 2000. N.B. The
scale of the vertical axis in the figures on this page differs from the scale in
the previous figures!
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2.1.2 Results: Expected Codelength

Figure 2.2 shows the expected difference in codelength between the two mod-
els under the same generating distributions as were used to sample the in-
dividual sequences. We note that by linearity of expectation the expected
difference in codelength between two models is equal to the difference in
expected codelength. Due to computational limitations the range of sample
sizes shown has been reduced compared to the range for individual sequences.

It can be seen that which model predicts best in expectation changes in the
same way as for the individual sequences from the previous section. The
expected codelength of the models, however, is not random and therefore
does not exhibit any local fluctuations. Figures 2.3(b), 2.3(c), 2.3(d) and
2.3(e) therefore suggest that the momentum phenomenon occurs for many
sequences generated by the distributions in the Full Bernoulli model with
θ∗ equal to 0.55, 0.65, 0.50 and 0.70 respectively. In fact, it will be proved
in Section 3.1 that the momentum phenomenon gets arbitrarily large under
some generating distributions in the Full Bernoulli model with arbitrarily
high probability for (sufficiently large) sample sizes.

We observe that the momentum phenomenon occurs whenever the generating
distribution is sufficiently similar to the distribution in the Single Bernoulli
model, but not if the two are actually equal. This can be explained by
different rates at which the parameters for the models are learned. Model
M0 contains no parameters and therefore the associated sequential predic-
tion algorithm, which predicts according to PM0(xn+1|xn), does not need to
learn their values. Model M1, by contrast, does contain a parameter and
PM1(xn+1|xn) requires a significant number of observations before its (im-
plicit) parameter estimate becomes reasonably accurate. For small sample
sizes the overhead for learning optimal parameter values contributes signifi-
cantly to the codelengths of the models. For large sample sizes, however, the
codelengths of the models are dominated by the codelength assigned to the
data by the best source in the models as measured by Kullback-Leibler diver-
gence from the generating source [Berger and Pericchi, 2001]. The momen-
tum phenomenon arises when the model containing the best source among
all models converges slower than another model and the difference in over-
head for parameter learning between the two models exceeds the difference
in codelength between the best sources in the models for small sample sizes.

It is not immediately clear that the momentum phenomenon poses a prob-
lem: we cannot expect any method to approximate the best-predicting model
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under all circumstances. However, in the next section we will introduce
the Switch-Point procedure, which attempts to exploit the momentum phe-
nomenon by explicitly modelling at which sample size we should switch from
one model to the other. We will demonstrate small gains by the Switch-Point
procedure on the current example in Section 2.3 and significant gains on a
more complicated example in Section 3.3. If the momentum phenomenon
is absent, then the codelength of the Switch-Point procedure is within a
constant —less than 0.6 bits in the worst-case — of the MDL codelength,
which makes it nearly as efficient as MDL and Bayes. Thus the Switch-Point
procedure always predicts nearly as well as MDL and Bayes, but sometimes
predicts significantly better. The improved predictive performance of the
Switch-Point procedure demonstrates that both MDL and Bayes deal with
the momentum phenomenon suboptimally. We call this fact the momentum
problem.
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(a) θ
∗ = 0.6

Figure 2.2: EPθ∗ [L1(X
n)]−EPθ∗ [L0(X

n)] under Bernoulli distribution Pθ∗ ∈
M1 with P (X = 1) = θ∗ for n = 1, . . . , 800.



-20

-15

-10

-5

 0

 5

 10

 0  100  200  300  400  500  600  700  800

Single Bernoulli
Full Bernoulli

(b) θ
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Figure 2.2 (cont.): EPθ∗ [L1(X
n)]−EPθ∗ [L0(X

n)] under Bernoulli distribution
Pθ∗ ∈ M1 with P (X = 1) = θ∗ for n = 1, . . . , 800.
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Figure 2.2 (cont.): EPθ∗ [L1(X
n)]−EPθ∗ [L0(X

n)] under Bernoulli distribution
Pθ∗ ∈ M1 with P (X = 1) = θ∗ for n = 1, . . . , 800.
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∗ = 0.3
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Figure 2.2 (cont.): EPθ∗ [L1(X
n)]−EPθ∗ [L0(X

n)] under Bernoulli distribution
Pθ∗ ∈ M1 with P (X = 1) = θ∗ for n = 1, . . . , 800. N.B. The scale of the
vertical axis in the figures on this page differs from the scale in the previous
figures!
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2.2 Switch-Point Procedure

This section describes the Switch-Point procedure, which is designed to deal
explicitly with the momentum phenomenon in prediction in the presence of
two models. It applies when the occurrence of the momentum phenomenon
cannot be ruled out as, for instance, in the Bernoulli example. Let the two
models be labelled Ma and Mb with Bayesian universal models PMa

and
PMb

and let the corresponding codelengths for any data sequence xn be de-
noted by La(x

n) := − log PMa
(xn) and Lb(x

n) := − log PMb
(xn) respectively.

Furthermore, suppose that we are to encode a sequence of n observations in
a time-series. We would like to assign short codelength to the sequence if
all observations in the sequence are predicted well by a single model; or if
the model that tends to best predict the next observation changes from Ma

to Mb somewhere in the sequence. The first case is handled well by regular
MDL and Bayes. The second deals with the momentum phenomenon.

The two stated goals are accomplished by adding an extra model Ms —
subscript s for Switch-Point model — that assigns short codelength to the
sequence if the best predicting model on the sequence changes from model
Ma to model Mb and applying MDL or Bayes to the new problem of
predicting with models Ma, Mb and Ms. This procedure is called the
Switch-Point procedure after the Switch-Point model Ms that it adds. The
code for the Switch-Point model is called the Switch-Point code. Its code-
length, called the Switch-Point codelength, on any sequence xn is denoted by
Ls(x

n) = − log PMs(x
n). In general the codelength assigned to any sequence

of observations by MDL or Bayes is guaranteed to be approximately equal
to the codelength of the best model. It will be shown in Section 4.2 that
the addition of the extra model Ms can in the worst case increase the MDL
or Bayes codelength by a constant c, which depends only on the number of
models and not on the data. Under a uniform prior wM over the models,
c ≤ − log 2

3
≈ 0.58 if the number of models is increased from two to three.

This worst-case is achieved only if PMs(x
n) = 0. The addition of the extra

model can therefore never significantly increase the total codelength assigned
to a sequence of observations. On the other hand, if Ls(x

n) is shorter than
both La(x

n) and Lb(x
n), then the addition of the Switch-Point model re-

duces the total codelength for xn. This follows because in this case PMs(x
n)
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is larger than PMa
(xn) and PMb

(xn), which implies that

− log
∑

M∈M∪{Ms}

1

3
· PM(xn) = − log

(

2

3
· PMDL(xn) +

1

3
· PMs(x

n)

)

< − log PMDL(xn).

It follows that the Switch-Point procedure satisfies the two goals stated above
if a suitable model Ms can be constructed.

How should model Ms be constructed? Recall that its codes should assign
short codelength to the data if the best predicting model changes from Ma

to Mb. Each code should code the start of the sequence using PMa
and after

some unknown — possibly zero — number of observations s it should switch
to code the remainder of the sequence with PMb

. Ms is constructed as the set
of such codes for all possible switch-points s and a Bayesian universal model
PMs is constructed using some reasonably flat prior ws over the switch-points.
Thus, the resulting codelength for PMs is given by

Ls(x
n) := − log

∞
∑

s=0

ws(s) · PMa
(xmin(s,n)) · PMb

(xn|xmin(s,n)), (2.1)

where PMa
(xmin(s,n)) ·PMb

(xn|xmin(s,n)) is the distribution corresponding to a
code that switches from model Ma to model Mb at switch-point s. When s
exceeds the sample size, n, all outcomes are coded using PMa

. We therefore
take the minimum of s and n. By virtue of its construction as a Bayesian
universal model, Ls(x

n) will never exceed the codelength for the optimal
switch-point ŝ by more than − log ws(ŝ) bits. Throughout this thesis we will
use

ws(s) :=
s−1.1

10.5844
for the prior over the switch-points.

Alternatively, one might consider constructing Ms using different mixtures
of PMa

and PMb
. We will show in Section 4.2 that any set of fixed-ratio

mixtures is not a suitable choice for Ms.

2.3 Switch-Point on the Bernoulli Example

The Switch-Point procedure will now be applied to the Bernoulli example.
It will be shown that the inclusion of the Switch-Point code can shorten



42 The Momentum Problem

codelengths by mitigating the effects of the momentum phenomenon. The
number of bits that can be won by the Switch-Point code depends on the
size of the momentum phenomenon. In the Bernoulli example the momen-
tum phenomenon is small. If the Switch-Point code is able to achieve shorter
codelength at all in this example, then this may therefore be considered sig-
nificant and a sign of its efficiency in exploiting the momentum phenomenon.
Section 3.3 will present a (more complicated) example in which the reduction
in codelength is much larger.

We have observed in Section 2.1 that the best predicting model changed from
the Single Bernoulli model to the Full Bernoulli model if the data were sam-
pled from any of a number of generating distributions in the Full Bernoulli
model. We therefore let model Ma correspond to the Single Bernoulli model
and model Mb to the Full Bernoulli model. That is, the Switch-Point code
switches from the Single Bernoulli model to the Full Bernoulli model. The
following two sections will compare the Switch-Point codelength to the code-
lengths of the two original models in the Bernoulli example. We will revisit
the individual sequences from Section 2.1 as well as compare codelengths in
expectation.

2.3.1 Results: Switch-Point on Individual Sequences

For a first impression of the behaviour of the Switch-Point code on the
Bernoulli example, we compare the Switch-Point codelength to the code-
lengths of the two Bernoulli models on the individual sequences from Fig-
ure 2.1, which is repeated in Figure 2.3 with the Switch-Point codelength
added. For ease of comparison the codelength according to the Single Bernoulli
model has again been subtracted.

The momentum phenomenon occurred for the sequences sampled from gen-
erating distributions in the Full Bernoulli model with parameter θ∗ equal
to 0.55, 0.65, 0.50 and 0.70. The corresponding figures are Figures 2.4(b),
2.4(c), 2.4(d) and 2.4(e) respectively. For the first three of these sequences
we now observe that the Switch-Point code achieves slightly shorter code-
length than the two Bernoulli codes for all shown sample sizes greater than a
certain sample-size. In all cases it achieves shorter codelength than the Sin-
gle Bernoulli model already at smaller sample sizes than the Full Bernoulli
model. For the sequence sampled from generating distribution with θ∗ equal
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to 0.70 the Switch-Point code achieves slightly worse codelength — approx-
imately 0.12 bits for all sample sizes greater than 220 — than the Full
Bernoulli model. It achieves much better codelength — more than 10 bits for
the same sample sizes — than the Single Bernoulli model. Explicit computa-
tion of − log PMDL and the codelength of the Switch-Point procedure shows
that also in this case addition of the Switch-Point model reduces codelength.
We conclude that the Switch-Point procedure achieved an improvement in
all cases where the momentum phenomenon occurred.

However, no strong conclusions can be justified based on the properties of
probabilistically generated sequences. In the next section we therefore ex-
amine the difference in codelength in expectation.
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(a) θ
∗ = 0.6

Figure 2.3: L1(x
n) − L0(x

n) and Ls(x
n) − L0(x

n) on sequences xn sampled
from the Bernoulli distribution with P (X = 1) = θ∗ for n = 1, . . . , 2000.



-20

-15

-10

-5

 0

 5

 10

 0  200  400  600  800  1000  1200  1400  1600  1800  2000

Single Bernoulli Codelength
Full Bernoulli Codelength
Switch-Point Codelength

(b) θ
∗ = 0.55
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(c) θ
∗ = 0.65

Figure 2.3 (cont.): L1(x
n)−L0(x

n) and Ls(x
n)−L0(x

n) on sequences xn sam-
pled from the Bernoulli distribution with P (X = 1) = θ∗ for n = 1, . . . , 2000.
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(d) θ
∗ = 0.5
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(e) θ
∗ = 0.7

Figure 2.3 (cont.): L1(x
n)−L0(x

n) and Ls(x
n)−L0(x

n) on sequences xn sam-
pled from the Bernoulli distribution with P (X = 1) = θ∗ for n = 1, . . . , 2000.
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(f) θ
∗ = 0.3
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(g) θ
∗ = 0.9

Figure 2.3 (cont.): L1(x
n)−L0(x

n) and Ls(x
n)−L0(x

n) on sequences xn sam-
pled from the Bernoulli distribution with P (X = 1) = θ∗ for n = 1, . . . , 2000.
N.B. The scale of the vertical axis in the figures on this page differs from the
scale in the previous figures!
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2.3.2 Results: Expected Switch-Point Codelength

We now compare the Switch-Point codelength to the expected codelengths
of the original two Bernoulli models. Figure 2.4 repeats Figure 2.2 with the
expected codelength of the Switch-Point code added. For ease of comparison
the expected codelength of the Single Bernoulli model has been subtracted.
Due to computational limitations the expected codelength of the Switch-
Point code has been approximated by averaging over 10 000 random samples
from the generating distribution.

We consider again the generating distributions for which we have observed
the momentum phenomenon. They are shown in Figures 2.3(b), 2.3(c), 2.3(d)
and 2.3(e), which show the expected codelengths under the generating dis-
tributions in the Full Bernoulli model with θ∗ equal to 0.55, 0.65, 0.5 and
0.7 respectively. We observe that in each case there exists a large range of
sample sizes such that the expected Switch-Point codelength is shorter than
the expected codelengths of the other two models. For these sample sizes the
Switch-Point procedure achieves shorter codelength on average than MDL
and Bayes. However, under the generating distributions with θ∗ equal to 0.5
and 0.7 the expected codelength of the Full Bernoulli model is smaller than
the Switch-Point codelength for sample sizes larger than approximately 347
and 360 respectively. We conjecture that for sufficiently large sample sizes the
same will happen under the generating distributions with θ∗ equal to 0.55 and
0.65. Therefore the range of sample sizes for which the Switch-Point proce-
dure achieves shorter codelength on average than MDL and Bayes is bounded
in this example. Apparently in many cases the Switch-Point code keeps as-
signing significant probability to the possibility that the optimal switch-point
has not yet been observed. We conclude that the Switch-Point procedure in
the current example (slightly) improves expected predictive performance for
a range of sample sizes whenever the momentum phenomenon is likely to
occur. As this suggests that it improves predictive on many individual se-
quences, it follows that the inefficiency of MDL and Bayes in dealing with
the momentum phenomenon can be exploited. Therefore the momentum
phenomenon is actually a momentum problem.
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(a) θ
∗ = 0.6

Figure 2.4: EPθ∗ [L1(X
n)] − EPθ∗ [L0(X

n)] and EPθ∗ [Ls(X
n)] − EPθ∗ [L0(X

n)]
under Bernoulli distribution Pθ∗ ∈ M1 with P (X = 1) = θ∗ for n =
1, . . . , 800. EPθ∗ [Ls(X

n)] has been approximated by averaging over 10 000
random samples from Pθ∗ .
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(b) θ
∗ = 0.55
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(c) θ
∗ = 0.65

Figure 2.4 (cont.): EPθ∗ [L1(X
n)] − EPθ∗ [L0(X

n)] and EPθ∗ [Ls(X
n)] −

EPθ∗ [L0(X
n)] under Bernoulli distribution Pθ∗ ∈ M1 with P (X = 1) = θ∗

for n = 1, . . . , 800. EPθ∗ [Ls(X
n)] has been approximated by averaging over

10 000 random samples from Pθ∗ .
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(d) θ
∗ = 0.5
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(e) θ
∗ = 0.7

Figure 2.4 (cont.): EPθ∗ [L1(X
n)] − EPθ∗ [L0(X

n)] and EPθ∗ [Ls(X
n)] −

EPθ∗ [L0(X
n)] under Bernoulli distribution Pθ∗ ∈ M1 with P (X = 1) = θ∗

for n = 1, . . . , 800. EPθ∗ [Ls(X
n)] has been approximated by averaging over

10 000 random samples from Pθ∗ .
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(f) θ
∗ = 0.3
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(g) θ
∗ = 0.9

Figure 2.4 (cont.): EPθ∗ [L1(X
n)] − EPθ∗ [L0(X

n)] and EPθ∗ [Ls(X
n)] −

EPθ∗ [L0(X
n)] under Bernoulli distribution Pθ∗ ∈ M1 with P (X = 1) = θ∗

for n = 1, . . . , 800. EPθ∗ [Ls(X
n)] has been approximated by averaging over

10 000 random samples from Pθ∗ . N.B. The scale of the vertical axis in the
figures on this page differs from the scale in the previous figures!
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2.4 Chapter Summary

In the Bernoulli example we investigated MDL and Bayesian prediction in the
presence of two nested models. We observed that the best-predicting model
changed over time on typical individual sequences and in expectation under
some generating sources in the larger model, which suggests that it occurs
for many typical sequences. We called this the momentum phenomenon and
noticed that it occurred whenever the generating source was close, but not
equal, to the source in the smaller model. The momentum phenomenon has
been explained as the result of the slow convergence of the best model when
a quickly converging adequate model was available. The maximum number
of bits that an optimal code might gain if it switches between the models
at exactly the right sample size, we have called the size of the momentum
phenomenon.

We then introduced the Switch-Point procedure, which adds the extra Switch-
Point model to the MDL and Bayesian procedures. The Switch-Point model
explicitly models at which sample size we should switch between the original
models. We first proved that the Switch-Point procedure could never predict
significantly worse than regular MDL and Bayes and then showed that it
slightly reduced predictive loss on all the individual sequences that exhibited
the momentum phenomenon. In addition, it reduced expected predictive loss
on a range of sample sizes for the corresponding generating sources, which
also exhibited the momentum phenomenon in expectation. We concluded
that the inefficiency of MDL and Bayes in dealing with the momentum phe-
nomenon can be exploited. Therefore the momentum phenomenon should
be considered a momentum problem.





CHAPTER 3

Characteristics of the

Momentum Problem

In this chapter we will prove that the momentum phenomenon can get arbi-
trarily large in probability for the Bernoulli example under some generating
sources. We will then consider generalisations of the Bernoulli example.
First, we generalise the Full Bernoulli model to any exponential family with
positive dimension and substitute any model containing a single source from
that exponential family for the Single Bernoulli model. For this setting we
will prove that the momentum phenomenon can get arbitrarily large for ex-
pected codelength under some generating sources. Then we will consider
another concrete example called the Conditional Bernoulli example. The
Conditional Bernoulli example increases the difference in complexity between
the models from the Bernoulli example by conditioning on an auxiliary vari-
able. This increases the difference in the number of observations that are
required before reasonable parameter values can be learned for the models.
We will demonstrate that the Switch-Point code (and hence the Switch-Point
procedure) significantly reduces predictive loss on the Conditional Bernoulli
example compared to regular MDL or Bayes.

3.1 Proof: Momentum Phenomenon in Probability

In this section we state and prove Theorem 3.1.1, which shows that the mo-
mentum phenomenon may get arbitrarily large with arbitrarily high proba-
bility. We generalise the Single Bernoulli model to any nested model of the

55
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Full Bernoulli model that contains only a single probabilistic source. To be
precise, consider the event that the Full Bernoulli model loses at least C bits
relative to the Single Bernoulli model on the first n1 outcomes, but achieves
shortest codelength after n2 outcomes. Then Theorem 3.1.1 shows that this
event occurs for arbitrarily large C with arbitrarily high probability for all
generating sources in a set Ψ. This set Ψ depends on C and the desired
probability. It is the set of sources in the Full Bernoulli model corresponding
to a range in the parameter space around the parameter of the source in the
Single Bernoulli model. This range shrinks when C or the desired probability
are increased. We will show in Section 4.2 that the Switch-Point code will
with the same probability gain at least C − [− log ws(n1)] bits compared to
either of the two other models. As n1 is known before observing any data,
we may select ws such that − log ws(n1) is small. However, the size of Ψ
decreases and n1 increases for larger values of C. Therefore in the selection
of ws there is a trade-off between the number of generating sources for which
it is able to realise a significant reduction in codelength and the size of the
reduction in codelength.

The difference in conditional codelength between the two models on each
single outcome can be bounded. Therefore the minimum number of samples
that the Full Bernoulli model needs before it catches up with the Single
Bernoulli model after losing C bits, must increase with increasing C. That
is, we can get the minimum number of samples at which MDL and Bayes
predict suboptimally arbitrarily large by increasing C. This will not be
proved formally.

Theorem 3.1.1 Let L1(x
n) and L0(x

n) denote the codelength assigned to
any data sequence xn by the Bayesian universal models for the Full Bernoulli
model, M1, with Jeffreys’ prior and a nested model that contains only the
Bernoulli probabilistic source with parameter θ0 ∈ (0, 1), M0, respectively.
Then for any constant C > 0 and any ε > 0 there exist a sample size n1 and
a set Ψ := {Pθ ∈ M1 : θ ∈ [1−(1−θ0) ·21/n1 , θ0)∪(θ0, θ0 ·21/n1 ]} ⊂ M1 \M0

such that for any Pθ∗ ∈ Ψ for all sufficiently large sample sizes n2 > n1

P n2
θ∗

(

L1(x
n1) > L0(x

n1) + C, L1(x
n2) < L0(x

n2)
)

≥ 1 − ε, (3.1)

where xn1 is the prefix of length n1 of xn2.

We first prove two lemmas that are related to Theorem 3.1.1. Then we prove
the theorem by combining the lemmas.
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Lemma 3.1.2 (Theorem 3.1.1, Part 1) Let L1(x
n), L0(x

n), M1 and M0

be as in Theorem 3.1.1. Then for any constant C > 0 and any ε1 > 0 there
exist a sample size n1 and a set Ψ := {Pθ ∈ M1 : θ ∈ [1−(1−θ0) ·21/n1 , θ0)∪
(θ0, θ0 · 21/n1 ]} ⊂ M1 \M0 such that for any Pθ∗ ∈ Ψ

P n1
θ∗

(

L1(x
n1) > L0(x

n1) + C
)

≥ 1 − ε1. (3.2)

Proof of Lemma 3.1.2 Let functions a and b be defined as

a(n1) := 1 − (1 − θ0) · 21/n1 , b(n1) := θ0 · 21/n1 . (3.3)

This definition will be motivated later. To exhibit an n1 that satisfies the
lemma, we will show that (3.2) is satisfied for all sufficiently large n1 and all
Pθ∗ ∈ Ψ if Ψ is defined as

Ψ := {Pθ ∈ M1 : θ ∈ [a(n1), θ0) ∪ (θ0, b(n1)]}. (3.4)

We need to assume that n1 is sufficiently large in order to use several asymp-
totic results. As a(n1) < θ0 < b(n1) for all n1 we have that Ψ is non-empty.

Let Θ := (0, 1) denote the parameter space of the Full Bernoulli model and
let θ̂(xn1) := arg maxθ∈Θ Pθ(x

n1) denote the maximum likelihood parameter

in the Full Bernoulli model. It is easily shown by differentiation that θ̂(xn1) =
m(xn1)/n1, where m(xn1) denotes the number of ones in xn1 . Then by basic
probability theory

P n1
θ∗ (L1(x

n1) > L0(x
n1) + C) ≥

P n1
θ∗

(

L1(x
n1) > L0(x

n1) + C, θ̂(xn1) ∈ A
)

(3.5)

for any set A ⊆ Θ. We let A express the requirement that θ̂(xn1) is bounded
away from the boundary of the parameter space by a constant δ > 0 that
doesn’t depend on n1. Hence, A is defined as

A := {θ : θ ∈ [δ, 1 − δ]}. (3.6)

We prove the lemma in three stages. In stage one we will show that, for any
Pθ∗ ∈ M1 ⊃ Ψ,

P n1
θ∗

(

L1(x
n1) > L0(x

n1) + C | θ̂(xn1) ∈ A
)

≥

P n1
θ∗

(

D(Pθ̂(xn1 )‖Pθ∗) < h(n1) | θ̂(xn1) ∈ A
)

(3.7)
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for some appropriately defined function h that doesn’t depend on Pθ∗ . Here
D(·‖·) denotes Kullback-Leibler divergence. (3.7) implies that

P n1
θ∗

(

L1(x
n1) > L0(x

n1) + C, θ̂(xn1) ∈ A
)

≥

P n1
θ∗

(

D(Pθ̂(xn1 )‖Pθ∗) < h(n1), θ̂(x
n1) ∈ A

)

. (3.8)

For any ε11, ε12 > 0 we will show that for any Pθ∗ ∈ Ψ

P n1
θ∗

(

θ̂(xn1) ∈ A
)

≥ 1 − ε11 (3.9)

and
P n1

θ∗

(

D(Pθ̂(xn1 )‖Pθ∗) < h(n1)
)

≥ 1 − ε12 (3.10)

for all sufficiently large n1. Selecting ε11 and ε12 such that ε11 + ε12 ≤ ε1,
Equations 3.9 and 3.10 imply that

P n1
θ∗

(

D(Pθ̂(xn1 )‖Pθ∗) < h(n1), θ̂(x
n1) ∈ A

)

≥ 1 − ε1 (3.11)

by basic probability theory. We will prove (3.9) in stage two and (3.10) in
stage three. Tracing back our steps by substituting (3.11) into (3.8) and the
result into (3.5), then completes the proof of the lemma.

Stage One We start by proving (3.7). We first find a lower bound for L1(x
n1)

and an upper bound for L0(x
n1). We expand L1(x

n1) as

L1(x
n1) = − log Pθ̂(xn1 )(x

n1) +
1

2
log

n1

2π
+ log

√

|I(θ̂)|
w(θ̂)

+ f
(

θ̂(xn1), n1

)

(3.12)

= − log Pθ̂(xn1 )(x
n1) +

1

2
log

n1

2π
+ log

∫

√

|I(θ)| dθ + f
(

θ̂(xn1), n1

)

,

(3.13)

where f : Θ × N → R is of order o(1) for fixed θ ∈ Θ. The expansion
holds for the Full Bernoulli model if θ̂(xn1) ∈ A [Grünwald et al., 2005;
Balasubramanian, 1997]. It will prove useful to replace f(θ̂(xn1), n1) by a
smaller term that doesn’t depend on θ̂(xn1). We do this by minimising over
all θ ∈ A and replace f(θ̂(xn1), n1) by

f(n1) := min
θ∈A

f(θ, n1). (3.14)
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It follows from [Balasubramanian, 1997] that f(n1) is of order o(1), which
implies O(1). For the Full Bernoulli model log

∫

θ∈Θ

√

|I(θ)| dθ = log π =
O(1). Grouping O(1) terms in (3.13) together, we therefore get that

L1(x
n1) ≥ − log Pθ̂(xn1 )(x

n1) +
1

2
log n1 + C ′ (3.15)

for some constant C ′.

Regarding L0(x
n1), it holds for any Pθ∗ ∈ Ψ that

max
xn1

{L0(x
n1) − [− log Pθ∗(x

n1)]} = n1 · max
x

{− log PM0(x) + log Pθ∗(x)}
(3.16)

= n1 · max
x

{

log
Pθ∗(x)

PM0(x)

}

(3.17)

= n1 · log
(

max

{

θ∗

θ0

,
1 − θ∗

1 − θ0

})

. (3.18)

For any distribution Pθ∗ ∈ Ψ, we have that θ∗ ∈ [a(n1), θ0) ∪ (θ0, b(n1)].
Therefore the maximum in (3.18) depends on a(n1) and b(n1). The definitions
of a and b have been chosen such that for all Pθ∗ ∈ Ψ

L0(x
n1) ≤ − log Pθ∗(x

n1) + 1. (3.19)

for any xn1 .

By (3.15) and (3.19) we get that for some constant C ′′

P n1
θ∗

(

L1(x
n1) > L0(x

n1) + C | θ̂(xn1 ∈ A
)

≥

P n1
θ∗

(

− log Pθ̂(xn1 )(x
n1) +

1

2
log n1 > − log Pθ∗(x

n1) + C ′′ | θ̂(xn1) ∈ A

)

.

(3.20)

Rewriting gives

P n1
θ∗

(

L1(x
n1) > L0(x

n1) + C | θ̂(xn1 ∈ A
)

≥

P n1
θ∗

(

log
Pθ̂(xn1 )(x

n1)

Pθ∗(xn1)
<

1

2
log n1 + C ′′ | θ̂(xn1) ∈ A

)

. (3.21)
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Letting m(xn1) denote the number of ones in xn1 , we have that

− log Pθ(x
n1) = m(xn1) · − log θ + (n1 − m(xn1)) · − log(1 − θ) (3.22)

= n1EPxn1
[− log Pθ(X)] (3.23)

for all Pθ ∈ M1, all n1 and all xn1 . This equivalence holds for all exponential
families that are extended to multiple outcomes by taking product distribu-
tions [Grünwald, 2007]. In addition, for the Bernoulli model the empirical
distribution Pxn1 is equal to the maximum likelihood distribution Pθ̂(xn1 ) if

θ̂(xn1) exists in Θ ⊃ A. Hence, conditional on θ̂(xn1) ∈ A,

log
Pθ̂(xn1 )(x

n1)

Pθ∗(xn1)
= n1EPxn1

[

log
Pθ̂(xn1 )(X)

Pθ∗(X)

]

(3.24)

= n1EP
θ̂(xn1 )

[

log
Pθ̂(xn1 )(X)

Pθ∗(X)

]

(3.25)

= n1D(Pθ̂(xn1 )‖Pθ∗). (3.26)

Substitution into (3.21) gives

P n1
θ∗

(

L1(x
n1) > L0(x

n1) + C | θ̂(xn1) ∈ A
)

≥

P n1
θ∗

(

D(Pθ̂(xn1 )‖Pθ∗) <
1
2
log n1 + C ′′

n1

| θ̂(xn1) ∈ A

)

. (3.27)

Letting

h(n1) :=
1
2
log n1 + C ′′

n1

, (3.28)

now completes the proof of (3.7).

Stage Two We will now prove (3.9). We choose δ sufficiently small such
that δ < a(1) ≤ a(n1) and 1 − δ > b(1) ≥ b(n1). For any fixed Pθ∗ ∈ Ψ and
any constant γ > 0 we have by the law of large numbers that

Pθ∗(|θ̂(xn1) − θ∗| ≤ γ) → 1. (3.29)

By taking γ sufficiently small, we have for all n1 that

{xn1 : |θ̂(xn1) − θ∗| ≤ γ} ⊆ {xn1 : θ̂(xn1) ∈ A}. (3.30)

Therefore
Pθ∗(θ̂(x

n1) ∈ A) → 1, (3.31)

which implies (3.9).
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Stage Three Our next step is to prove (3.10). We will show that the prob-
ability of the converse of (3.10) does not exceed ε12 for sufficiently large n1.
In the proof we will use the following theorem. Suppose E is a convex set
of probability distributions on X and define P (E) := P ({xn : Pxn ∈ E}).
Then, for any distribution P ,

P (E) ≤ 2−nDmin

(3.32)

if Dmin := minP ′∈E D(P ′‖P ) exists[Grünwald, 2007]. A similar result, which
applies also if the minimum in the definition of Dmin is replaced by an infi-
mum, is obtained by Csiszár [1984, Equation 2.16]. This latter result, how-
ever, requires the stronger condition that E be almost completely convex,
which I have been unable to verify in the applications of the theorem below.

We will also use several properties of the Bernoulli model on single outcomes
that hold for all exponential families if every distribution is indexed by its
mean, which is called the mean-value parameterisation [Grünwald, 2007].
Hence, we would reparameterise the Bernoulli model by its mean-value pa-
rameterisation. This is unnecessary, however, as the common parameterisa-
tion for the Bernoulli model, which we have used until now, already indexes
each distribution over a single outcome by its mean:

Eθ[X] = Pθ(X = 1) = θ. (3.33)

For the proof, let E1 and E2 be defined as

E1 := {Pθ ∈ M1 : D(Pθ‖Pθ∗) ≥ h(n1), θ ≤ θ∗}, (3.34)

E2 := {Pθ ∈ M1 : D(Pθ‖Pθ∗) ≥ h(n1), θ ≥ θ∗}. (3.35)

We will apply (3.32) to E1 and E2. Convexity of E1 and E2 will now be proved
simultaneously. Let i = 1, 2. For exponential families in their mean-value
parameterisation, D(Pθ‖Pθ∗) is a convex function of θ. In addition, it follows
from the definition of Kullback-Leibler divergence that D(Pθ‖Pθ∗) = 0 iff
θ = θ∗. Therefore the region in the parameter space corresponding to Ei

must be convex.

We need to show that any distribution P that is a linear combination of any
distributions Pθ′ and Pθ′′ in Ei is also in Ei. Without loss of generality we
will assume that θ′ ≤ θ′′. Let P be given by

P (x) = αPθ′(x) + (1 − α)Pθ′′(x) (3.36)
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for any arbitrary Pθ′ , Pθ′′ ∈ Ei and any arbitrary α such that 0 ≤ α ≤
1. The only possible distributions on binary outcome spaces are Bernoulli
distributions. Therefore P is a Bernoulli distribution with some mean µ. We
now show that θ′ ≤ µ ≤ θ′′ and therefore that P ∈ Ei:

µ = EP [X] (3.37)

=
∑

x

α · Pθ′(x) + (1 − α) · Pθ′′(x) (3.38)

= αEPθ′ [X] + (1 − α)EPθ′′ [X] (3.39)

= α · θ′ + (1 − α) · θ′′. (3.40)

Let i = 1, 2. Convexity of D(Pθ‖Pθ∗) in θ implies continuity. Therefore
Dmin

i = minPθ∈Ei
D(Pθ‖Pθ∗) = h(n1) exists if Ei is not empty, and we can

apply (3.32) to get an upper bound on the probability of Ei. Thus

Pθ∗(Ei) ≤ 2−n1h(n1) (3.41)

= 2
−n1

log
√

n1+C′′
n1 (3.42)

=
2−C′′

√
n1

. (3.43)

In addition, if Ei is empty, then

Pθ∗(Ei) = 0 ≤ 2−C′′

√
n1

. (3.44)

The maximum likelihood distribution may not exist for some xn1 . This is the
case if xn1 is a sequence of either all zeroes or of all ones. The probability of
this event is

Pθ∗(θ̂(x
n1) does not exist) = θ∗n1 + (1 − θ∗)n1 . (3.45)

We can now bound the probability in (3.10) from below by

P n1
θ∗

(

D(Pθ̂(xn1 )‖Pθ∗) < h(n1)
)

≥

1 −
(

Pθ∗(E1) + Pθ∗(E2) + Pθ∗(θ̂(x
n1) does not exist)

)

. (3.46)
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Recall that 0 < θ∗ < 1. Therefore for all sufficiently large n1

Pθ∗(E1) + Pθ∗(E2) + Pθ∗(θ̂(x
n1) does not exist) ≤

2 · 2−C′′

√
n1

+ θ∗n1 + (1 − θ∗)n1 ≤ ε12, (3.47)

which completes the proof of (3.10) and thereby the proof of the lemma.

�

Lemma 3.1.3 (Theorem 3.1.1, Part 2) Let L1(x
n), L0(x

n), M1 and M0

be as in Theorem 3.1.1. Then, for any ε2 > 0, any sample size n1 and any
set Ψ ⊆ M1 \ M0, for any Pθ∗ ∈ Ψ for all sufficiently large sample sizes
n2 > n1

P n2
θ∗

(

L1(x
n2) < L0(x

n2)
)

≥ 1 − ε2. (3.48)

Proof of Lemma 3.1.3 Intuitively, (3.48) expresses consistency of MDL
(see Section 1.4.4). Formally, as Ψ ⊆ M1 \M0, we use that for all Pθ∗ ∈ Ψ

P n2
θ∗

(

L1(x
n2) < L0(x

n2)
)

→ 1 (3.49)

as n2 → ∞, which implies (3.48). Although, technically, M0 is not an
exponential family, it is readily seen that the arguments in [Barron et al.,
1998] that show (3.49), among others, for nested exponential families, transfer
directly.

�

Proof of Theorem 3.1.1 (Combining Lemma 3.1.2 and 3.1.3) By com-
patibility of probabilistic sources (see page 4), (3.2) implies that

P n2
θ∗ (L1(x

n1) > L0(x
n1) + C) ≥ 1 − ε1. (3.50)

We select ε1, ε2 > 0 such that ε1 + ε2 ≤ ε. Then, by basic probability theory,
(3.50) and (3.48) together imply that

P n2
θ∗ (L1(x

n1) > L0(x
n1) + C, L1(x

n2) < L0(x
n2)) ≥ 1 − ε, (3.51)

which completes the proof of Theorem 3.1.1.

�
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3.2 Proof: Momentum Phenomenon in Expectation

In the previous section we showed that, in the Bernoulli example, the momen-
tum phenomenon may get very large with high probability. In this section
we generalise the models in the Bernoulli example to two models Ma and
Mb and summarise the difference in codelength between the codes for Ma

and Mb by its expected value instead. Let La(x
n) and Lb(x

n) denote the
codelength assigned to any data sequence xn by the codes for Ma and Mb,
respectively. Then we say that the momentum phenomenon occurs for ex-
pected codelength if there exist sample sizes n1, n2 with n1 < n2 such that
E[Lb(X

n1)−La(X
n1)] > C and E[Lb(X

n2)−La(X
n2)] < 0 for some constant

C > 0.1 We call the maximum C for which the expected codelength exhibits
the momentum phenomenon the size of the momentum phenomenon for ex-
pected codelength. We will state and prove Theorem 3.2.1, which shows that
the momentum phenomenon for expected codelength may get very large.

Model Mb is a generalisation of the Full Bernoulli model to any discrete
exponential family with finite dimension and model Ma generalises the Single
Bernoulli model to any model containing a single source from Mb. We call an
exponential family discrete if it is defined on a countable outcome space. In
addition, we generalise Jeffreys’ prior to any continuous positive prior on the
parameter space Θ of Mb. For exponential families the Fisher information
matrix I(θ) (defined in (1.11)) is always positive definite and the likelihood
functions ln Pθ(x) are infinitely differentiable to θ [Barndorff-Nielsen, 1978].
As a consequence |I(θ)| > 0 and I(θ) is continuous in θ. Therefore Jeffreys’
prior, if it exists, is always continuous and positive for exponential families,
although for some exponential families it does not exist. For such exponential
families the integral,

∫
√

|I(θ)| dθ, in its definition diverges.

Following Clarke and Barron [1990] we define a d-dimensional exponential
family on finite or countably infinite outcome space X as a set of probability
distributions of the form

Pθ(x) := e−θT φ(x)g(x)/c(θ)

with natural parameter space Θ = {θ ∈ R
d : c(θ) < ∞}, where c(θ) =

∫

e−θT φ(x)g(x) dx is a normalising constant and the function g(x) : X → R

is an arbitrary nonnegative function that is positive for at least one x ∈ X .
In addition, we assume that the vector-valued function φ(x) is such that

1Compare the definition of the momentum phenomenon on page 28.
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θT φ(x) is a non-constant function of x, except for θ = 0. This implies
that the dimensionality of the family cannot be reduced [Barndorff-Nielsen,
1978]. Examples of probability distributions that can be written in this form
are the Poisson, geometric, Bernoulli and multinomial distributions. The
distributions in the exponential family are extended to n outcomes by taking
the n-fold product distribution, such that

P n
θ (xn) :=

n
∏

i=1

Pθ(xi).

As in the proof of Theorem 3.1.1 in the previous section, it will be shown
in Theorem 3.2.1 that the size of the momentum phenomenon for expected
codelength exceeds an arbitrarily large constant C > 0 for all generating
sources in a set Ψ. As in the previous section, the set Ψ consists of the
sources in Mb corresponding to a region in the parameter space around the
source in model Ma that shrinks if C is increased.

Theorem 3.2.1 Let Mb := {Pθ : θ ∈ Θ ⊆ R
d} be a discrete d-dimensional

exponential family in its natural parameterisation that is extended to multiple
outcomes by taking product distributions, with Θ an open and convex set.
Let P n

Mb
(xn) :=

∫

P n
θ (xn)w(θ) dθ denote the probability assigned to any data

sequence xn by the Bayesian universal model P n
Mb

for Mb under some prior
w on Θ and let Lb(x

n) := − log P n
Mb

(xn) denote the corresponding codelength.
In addition, pick any Pθ0 ∈ Mb and let La(x

n) := − log P n
θ0

(xn) denote the
corresponding codelength for xn. Then for every w that is both continuous
and positive everywhere on Θ and for every constant C > 0 there exist a
sample size n1 and a set Ψ ⊆ Mb \ {Pθ0} that depends on n1 such that for
all Pθ∗ ∈ Ψ for all sufficiently large sample sizes n2 > n1

EP
n2
θ∗

[Lb(X
n1) − La(X

n1)] > C, (3.52)

but

EP
n2
θ∗

[Lb(X
n2) − La(X

n2)] < 0, (3.53)

where xn1 is the prefix of length n1 of xn2.

Proof Under conditions that hold for any exponential family Mb and any
continuous and positive prior w(θ) on the parameter space Θ of Mb, Clarke
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and Barron [1990] establish the following approximation of the Kullback-
Leibler divergence D(P n

θ∗‖P n
Mb

) for any Pθ∗ ∈ Mb:

D(P n
θ∗‖P n

Mb
) =

d

2
log

n

2πe
+ log

√

|I(θ∗)|
w(θ∗)

+ f(θ∗, n), (3.54)

where f(θ∗, n) is of order o(1) and converges uniformly to zero when n goes
to infinity for θ∗ in any compact set Υ ⊂ Θ. In other words, there exists
a function g(n) of order o(1) such that |f(θ∗, n)| ≤ g(n) for all θ∗ ∈ Υ and
all n, where |f(θ∗, n)| denotes the absolute value of f(θ∗, n). In addition,
as 0 < w(θ) < ∞ for all θ ∈ Θ by continuity and positivity of w and, for
exponential families, 0 < |I(θ)| < ∞ for all θ ∈ Θ [Barndorff-Nielsen, 1978],
we have that log

√

|I(θ∗)|/w(θ∗) is bounded as a function of θ∗ over any
compact subset of Θ. Therefore (3.54) implies that for any compact subset
Υ ⊂ Θ there must exist constants C ′ and C ′′ such that, for all n, for all
θ∗ ∈ Υ

C ′ ≤ D(P n
θ∗‖P n

Mb
) − d

2
log

n

2πe
≤ C ′′. (3.55)

In particular, let Υ ⊂ Θ be any closed set with non-empty interior that
contains θ0. As Θ 3 θ0 is open, convex and bounded by assumption and
definition, such a set Υ must always exist and be compact. Letting C ′ and
C ′′ be constants such that (3.55) holds for all θ∗ ∈ Υ, we now pick n1 large
enough such that

d

2
log

n1

2πe
+ C ′ − 1 > C, (3.56)

and define Ψ as

Ψ :=

{

Pθ ∈ Mb : θ ∈ Υ \ {θ0}, D(Pθ‖Pθ0) <
1

n1

}

. (3.57)

We have the following properties, which together ensure that Ψ is non-empty.
Firstly, Θ is open. Therefore θ0 cannot lie at the boundary of Θ. Secondly,
for exponential families in their natural parameterisation, D(Pθ‖Pθ0) is a
continuous function of θ [Grünwald, 2007] and reaches its unique minimum
D(Pθ‖Pθ0) = 0 at θ = θ0. These latter two properties, together with openness
of Θ, ensure that {θ ∈ Θ : D(Pθ‖Pθ0) < 1/n1} is an open superset of {θ0}.
Hence, both Υ and {θ ∈ Θ : D(Pθ‖Pθ0) < 1/n1} are proper supersets of
{θ0} with non-empty interior. It follows that their intersection must also be
a proper superset of {θ0}. Therefore Ψ is not empty.



Conditional Bernoulli Example 67

We will now first prove (3.52) and then prove (3.53). As D(Pθ∗‖Pθ0) ≤ 1/n1

for all Pθ∗ ∈ Ψ, we have that

EP
n2
θ∗

[Lb(X
n1) − La(X

n1)] = EP
n1
θ∗

[Lb(X
n1) − La(X

n1)] (3.58)

= D(P n1
θ∗ ‖P n1

Mb
) − n1D(Pθ∗‖Pθ0) (3.59)

≥ D(P n1
θ∗ ‖P n1

Mb
) − 1 (3.60)

for all Pθ∗ ∈ Ψ. Moreover, by (3.55) and (3.56) it follows that

EP
n2
θ∗

[Lb(X
n1) − La(X

n1)] ≥ d

2
log

n1

2πe
+ C ′ − 1 (3.61)

≥ C, (3.62)

which is (3.52).

To guide our intuition regarding (3.53), we note that it basically expresses
consistency of MDL (see Section 1.4.4) in expectation. Formally, we use that

EP
n2
θ∗

[Lb(X
n2) − La(X

n2)] = D(P n2
θ∗ ‖P n2

Mb
) − n2D(Pθ∗‖Pθ0). (3.63)

By (3.55) it is seen that D(P n2
θ∗ ‖P n2

Mb
) grows logarithmically in n2 for suffi-

ciently large n2 for all Pθ∗ ∈ Ψ. However, D(Pθ∗‖Pθ0) is a positive constant
for all Pθ∗ ∈ Ψ, which implies that n2D(Pθ∗‖Pθ0) grows linearly in n2. There-
fore for all Pθ∗ ∈ Ψ for all sufficiently large n2 > n1

EP
n2
θ∗

[Lb(X
n2) − La(X

n2)] < 0, (3.64)

which is (3.53). This completes the proof of the theorem. �

3.3 Conditional Bernoulli Example

In this section we present another example, called the Conditional Bernoulli
example, that exhibits the momentum problem. The Conditional Bernoulli
example is a generalisation of the Bernoulli example from Section 2.1. It
increases the difference in complexity between the Full Bernoulli model and
the Single Bernoulli model by conditioning on an auxiliary variable. As a
result the new Full Bernoulli model requires even more observations before
it starts predicting as well as the Single Bernoulli model. This magnifies
the momentum phenomenon, which allows us investigate it more easily. The
Conditional Bernoulli example will provide a concrete example where the
Switch-Point procedure gains a significant number of bits compared to MDL
and Bayes due to the momentum problem.
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3.3.1 Model Specification

Suppose the data consist of paired observations (x1, y1), (x2, y2), . . . , (xn, yn)
from outcome space X × Y in a time-series. Let X = {1, . . . , d} and Y =
{0, 1}. By the definition of conditional probability, each distribution P (x, y)
over a single paired observation is the product of its marginal distribution
P (x) =

∑

y P (x, y) over X and its conditional distribution P (y|x) over Y
given x. We use this to specify two nested models called the Conditional
Single Bernoulli model and the Conditional Full Bernoulli model. The dis-
tributions are extended to multiple outcomes by taking product distributions.
As a consequence the pairs of observations are independently and identically
distributed as seen through each model.

We define the Conditional Single Bernoulli model as

M2 := {P0.6},

where P0.6(x) = 1
d

is the uniform distribution over X and P0.6(y|x) is the
Bernoulli distribution with parameter 0.6, which assigns probability 0.6 to
observing a one. Note that, under P0.6, X and Y are independent. The
Conditional Full Bernoulli model is defined as

M3 := {Pθ : θ ∈ Θd = (0, 1)d},

where Pθ(x) = 1
d

is the uniform distribution over X and Pθ(y|x) is the
Bernoulli distribution parameterised by a separate parameter θx for each
value of x.

Note that if d = 1, then the Conditional Bernoulli example reduces to the
previous Bernoulli example. In our experiments, however, we will set d = 32,
which increases the difference in complexity between the two models and
magnifies the momentum problem.

3.3.2 Computing Expected Codelength

In our experiments we will sample the data from various generating sources
Pθ∗ in the Conditional Full Bernoulli model. We will summarise the code-
length of individual sequences by the expected codelength under Pθ∗ , for
which we will now find efficiently computable expressions.
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As the Conditional Single Bernoulli model has no parameters, it uses the
same fixed distribution on all outcomes. This makes its expected codelength
on n outcomes easy to compute using the sequential decomposition of ex-
pected codelength:

E[L2(X
n, Y n)] =

n
∑

i=1

E[L2(Xi, Yi|X i−1, Y i−1)]

= nE[L2(X,Y )]

= nE[L2(X)] + nE[L2(Y |X)]

= n log d +
n

d
·
∑

x

(−θ∗x log 0.6 − (1 − θ∗x) log 0.4). (3.65)

Also by the sequential decomposition of expected codelength, the expected
codelength for the Conditional Full Bernoulli model can be rewritten as

E[L3(X
n, Y n)] =

n
∑

i=1

E[L3(Xi, Yi|X i−1, Y i−1)]

=
n
∑

i=1

E[L3(Xi|X i−1, Y i−1)] +
n
∑

i=1

E[L3(Yi|Xi, X
i−1, Y i−1)]

= n log d +
1

d
·

n
∑

i=1

∑

xi

E[L3(Yi|xi, X
i−1, Y i−1)]. (3.66)

It can be shown (See Appendix A) that the posterior probability of the next
outcome according to the Conditional Full Bernoulli model using Jeffreys’
Prior is given by

PM3(Yi = 1|xi, x
i−1, yi−1) =

k + 1
2

j + 1
, (3.67)

where j denotes the number of occurrences of xi in xi−1 and k denotes the
number of occurrences of (xi, 1) in (xi−1, yi−1). It follows that all terms with
equal j and k have the same codelength. Grouping them together gives

E[L3(Yi|xi, X
i−1, Y i−1)] =

i−1
∑

j=0

(

i − 1

j

)(

1

d

)j (

1 − 1

d

)i−1−j

×
j
∑

k=0

(

j

k

)

θ∗xi

k(1 − θ∗xi
)j−k

×
(

−θ∗xi
log

k + 1
2

j + 1
− (1 − θ∗xi

) · log j − k + 1
2

j + 1

)

,

(3.68)
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which can be computed efficiently.

3.3.3 Representative Generating Sources

We now motivate our choice of generating sources. Suppose that the expected
codelength under any generating source Pθ∗ were equal to the average of the
expected codelengths under generating sources Pθ1 , . . . , Pθd with θi such
that all parameters in θi are equal to the i-th component of θ∗. Then to
get a good impression of the expected codelength for arbitrary generating
sources in the Conditional Full Bernoulli model, it would be sufficient to
obtain results for sources Pθi with all parameters equal to the same value.
We will now prove this supposition, first for the Conditional Single Bernoulli
model and then for the Conditional Full Bernoulli model, and conduct our
experiments accordingly.

Let θx denote the parameter vector with all parameters equal to the x-th
component of θ∗. Then Pθ∗(y|x) = Pθx(y|x′) for any x and x′. In addition,
L2(x, y) = L2(x

′, y) for any x and x′. Therefore

Eθ∗ [L2(X
n, Y n)] = n

∑

x

Pθ∗(x)
∑

y

Pθ∗(y|x)L2(x, y)

= n
∑

x

Pθ∗(x)
∑

x′

Pθx(x′)
∑

y

Pθ∗(y|x)L2(x, y)

= n
∑

x

Pθ∗(x)
∑

x′

Pθx(x′)
∑

y

Pθx(y|x′)L2(x
′, y)

=
∑

x

Pθ∗(x)Eθx [L2(X
n, Y n)]

=
1

d

∑

x

Eθx [L2(X
n, Y n)].

By (3.68) E[L3(Yi|xi, X
i−1, Y i−1)] depends on xi only through θ∗xi

. In addi-
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tion L3(xi|xi−1, yi−1) is the same for all xi, xi−1 and yi−1. Therefore

Eθ∗ [L3(X
n, Y n)] =

n
∑

i=1

Eθ∗ [L3(Xi, Yi|X i−1, Y i−1)]

=
n
∑

i=1

∑

xi

Pθ∗(xi)Eθ∗ [L3(xi, Yi|X i−1, Y i−1)]

=
n
∑

i=1

∑

xi

Pθ∗(xi)
∑

x′
i

Pθxi (x′
i)

×
(

Eθ∗ [L3(xi|X i−1, Y i−1)] + Eθ∗ [L3(Yi|xi, X
i−1, Y i−1)]

)

=
n
∑

i=1

∑

xi

Pθ∗(xi)
∑

x′
i

Pθxi (x′
i)

×
(

Eθx [L3(x
′
i|X i−1, Y i−1)] + Eθx [L3(Yi|x′

i, X
i−1, Y i−1)]

)

=
∑

x

Pθ∗(x)Eθx [L3(X
n, Y n)]

=
1

d

∑

x

Eθx [L3(X
n, Y n)].

Thus the expected codelength under any Pθ∗ is equal to the average of the
expected codelengths under generating sources Pθ1 , . . . , Pθd with θi such
that all parameters in θi are equal to the i-th component of θ∗. We therefore
restrict our attention to generating sources Pθi with all parameters set to the
same value.

3.3.4 Results

We now show that the Switch-Point procedure gains a significant number
of bits compared to MDL and Bayes due to the momentum problem. Let
Ls(x

n) denote the codelength of xn under the Switch-Point code that switches
from M2 to M3. Figure 3.1 shows the expected value of L3(X

n) − L2(X
n)

and Ls(X
n) − L2(X

n) under various Pθ∗ for sample sizes up to 300. Each
of the parameters of θ∗ is set to θ∗x. The values for θ∗x have been chosen as
representatives of qualitatively different graphs. L2(X

n) is subtracted from
Ls(X

n) for ease of comparison. We will now make several observations about
the results in Figure 3.1.

Consider Figures 3.2(c), 3.2(d), 3.2(e) and 3.2(g), which show the expected
codelengths under Pθ∗ with θ∗x ∈ {0.37, 0.38, 0.40, 0.80}. In all these cases the
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Switch-Point code assigns the shortest codelength to the data in expectation
for hundreds of sample sizes. For θ∗x ∈ {0.38, 0.40, 0.80} the gain exceeds
3 bits for sample sizes where the expected difference in codelength between
the two Conditional Bernoulli models is near zero. For θ∗

x = 0.80 it even
exceeds 5 bits. This gain is substantial, especially considering the small
expected difference in codelength between the Conditional Bernoulli models,
which never much exceeds 5 bits either. We conclude that the Switch-Point
code efficiently exploits the momentum phenomenon to achieve a reduction
in codelength.

In addition, the gain realised by the Switch-Point code may become even
larger. Comparing the gain realised for d = 32 (the current example) to the
gain when d = 1 (the original Bernoulli example) strongly suggests that for
d � 32 an even larger reduction in codelength can be achieved. In addi-
tion, computational limitations prevent us from computing the Switch-Point
codelength for θ∗x even closer to 0.6. Additional plots, which are not included
in this thesis, show that the expected difference in codelength between the
Conditional Bernoulli models becomes much larger for such θ∗

x.

In the Bernoulli Example we observed that the momentum phenomenon
occurred only if the source in the Single Bernoulli model was sufficiently
close to the generating source. In Figure 3.1 we can see that for the Con-
ditional Bernoulli Example the Switch-Point code assigns shortest code-
length for many sample sizes if θ∗x ∈ {0.37, 0.38, 0.40, 0.80, 0.9999}, but not if
θ∗x ∈ {0.20, 0.30}. Shortest codelength by the Switch-Point code implies that
the momentum phenomenon occurs. By interpolation, we therefore assume
that the momentum phenomenon occurs for many sequences if all parame-
ters of Pθ∗ are between 0.37 and 0.9999 and at least one parameter differs
from 0.6, but not very often if all parameters are smaller than 0.30. At first
sight it might appear that the region [0.37, 0.9999] covers a large part of
the total parameter space. However, as d = 32, it covers only a fraction of
(0.9999 − 0.37)32 = 3.77 × 10−7, which is very small indeed.

We should be careful in drawing conclusions about typical individual se-
quences from the expected codelengths shown in Figure 3.1. For instance,
in the figures where the Switch-Point code achieves shortest codelength the
expected Switch-Point code codelength starts decreasing for sample sizes
smaller than the sample size n at which the expected difference between
L3(X

n) and L2(X
n) reaches its maximum. This does not happen for indi-

vidual sequences, however, as the optimal switch-point for the Switch-Point
code grows with the sample size until L3(x

n)−L2(x
n) starts decreasing. The
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discrepancy can be explained by recalling that the expected codelength is
an average over all sequences. For some of those sequences, the momen-
tum phenomenon occurs and L3(x

n) − L2(x
n) reaches its maximum at a

sample size before its expected maximum. On those sequences the Switch-
Point code gains compared to the codelengths for the Conditional Bernoulli
models. Therefore the expected Switch-Point codelength starts decreasing
relative to the other two expected codelengths before the expected difference
in codelength between the two models reaches its maximum.

For θ∗x ∈ {0.37, 0.38, 0.40} we note that the expected codelength of the Condi-
tional Full Bernoulli model is smaller for small sample sizes than the expected
codelength of the Conditional Single Bernoulli model. This is surprising as for
these generating sources L2(x

n) is very similar to the optimal code with code-
lengths − log Pθ∗(x

n), whereas L3(x
n) has high regret and will therefore not

assign very short codelength to any short sequence. We now provide a tenta-
tive explanation of this phenomenon. Consider a typical sequence xn sampled
from generating source Pθ∗ . Then L3(x

n) = − log Pθ̂(xn)(x
n)+R(PM3 , x

n) and

therefore L3(x
n) is shorter than L2(x

n) if

R(PM3 , x
n) < − log Pθ∗(x

n) + log Pθ̂(xn)(x
n) + ε

for ε = L2(x
n)+log Pθ∗(x

n), which is small. The difference between − log Pθ∗

and − log Pθ̂(xn)(x
n) is very small with high probability for large sample sizes.2

For short sample sizes, however, it is not insignificant. In particular, what we
observe for θ∗x ∈ {0.37, 0.38, 0.40} is that it exceeds R(PM3 , x

n). This explains
why the Conditional Full Bernoulli model achieves shorter codelength in
expectation than the Conditional Single Bernoulli model for small sample
sizes under these generating sources.

2Compare typical sets [Cover and Thomas, 1991].
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Figure 3.1: EPθ∗ [L3(X
n)]−EPθ∗ [L2(X

n)] and EPθ∗ [Ls(X
n)]−EPθ∗ [L2(X

n)] for
n = 1, . . . , 300. All parameters in θ∗ were set to θ∗x and d = 32. Eθ∗ [Ls(X

n)]
has been approximated by averaging over 50 000 random samples from Pθ∗ .
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(d) θ
∗
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= 0.38

Figure 3.1 (cont.): EPθ∗ [L3(X
n)] − EPθ∗ [L2(X

n)] and EPθ∗ [Ls(X
n)] −

EPθ∗ [L2(X
n)] for n = 1, . . . , 300. All parameters in θ∗ were set to θ∗x and

d = 32. Eθ∗ [Ls(X
n)] has been approximated by averaging over 50 000 ran-

dom samples from Pθ∗ .
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Figure 3.1 (cont.): EPθ∗ [L3(X
n)] − EPθ∗ [L2(X

n)] and EPθ∗ [Ls(X
n)] −

EPθ∗ [L2(X
n)] for n = 1, . . . , 300. All parameters in θ∗ were set to θ∗x and

d = 32. Eθ∗ [Ls(X
n)] has been approximated by averaging over 50 000 ran-

dom samples from Pθ∗ .
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Figure 3.1 (cont.): EPθ∗ [L3(X
n)] − EPθ∗ [L2(X

n)] and EPθ∗ [Ls(X
n)] −

EPθ∗ [L2(X
n)] for n = 1, . . . , 300. All parameters in θ∗ were set to θ∗x and

d = 32. Eθ∗ [Ls(X
n)] has been approximated by averaging over 50 000 ran-

dom samples from Pθ∗ .



78 Characteristics of the Momentum Problem

3.4 Chapter Summary

We have proved that in the Bernoulli example the momentum phenomenon
can get arbitrarily large with arbitrarily high probability for any generating
source in a suitably chosen subset Ψ of the Full Bernoulli model. We argued
that the minimum number of outcomes at which regular MDL and Bayes
predict suboptimally, increases with the size of the momentum phenomenon.
It follows that we can get the number of outcomes at which MDL and Bayes
predict suboptimally arbitrarily large with arbitrarily high probability for
generating sources in a suitably chosen Ψ. In addition, we proved that the
momentum phenomenon could get arbitrarily large in expectation for all
generating sources in a suitable Ψ on any two-model prediction problem if
one of the models was an exponential family with positive dimension and the
other model was any submodel containing only a single probabilistic source.

The momentum phenomenon was small in the Bernoulli example. We there-
fore generalised it to the Conditional Bernoulli example, which provides a
concrete example where the Switch-Point procedure gains a significant num-
ber of bits compared to regular MDL and Bayes. It increased the difference
in rates of convergence between the models by increasing the difference in
complexity. We demonstrated for the Conditional Bernoulli example that
for some generating sources the Switch-Point code gained 3 or even 5 bits
in expectation compared to the best model. This was comparable to the
maximum expected difference in codelength between the original models. As
a result the Switch-Point procedure reduced predictive loss compared to reg-
ular MDL and Bayes in these cases. Furthermore, we argued that if either
the difference in complexity between the Conditional Bernoulli model were
increased by taking d � 32, or the generating source were taken even closer
to the source in the Single Bernoulli model by setting θ∗

x closer to 0.6, then
the Switch-Point code should gain even more bits. Finally, just as in the
Bernoulli example, we observed that the momentum phenomenon occurred
if the source in the Conditional Single Bernoulli was sufficiently similar to
the generating source.



CHAPTER 4

Discussion

This chapter provides a discussion of the momentum problem. We first offer
an explanation in terms of strategies for prediction, which are constructed
in two stages. Then we provide a discussion of the Switch-Point procedure
and consider the implications of our results for the task of model selection.
Finally, we review related prior work and make several suggestions for future
research.

4.1 Understanding the Momentum Problem

In this section we give an interpretation of the momentum problem in terms
of strategies for prediction, which are called prequential forecasting systems
(PFSs). These are the subject of interest in the so-called prequential ap-
proach to statistics. We interpret MDL (and Bayesian Model Averaging)
as the construction of PFSs in two stages. We then argue that the design
of regular MDL does not take the momentum into account in the second
stage. This explains why the Switch-Point procedure, which has been explic-
itly designed with the momentum phenomenon in mind, is able to improve
predictive accuracy compared to regular MDL

79
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4.1.1 Prequential Approach to Statistics

We introduced the Bernoulli example by considering daily forecasts of the
probability of precipitation for the next day. Likewise we will now consider
predicting the next outcome in a time-series at every moment in the series.
That is, we consider not only P (xn+1|xn), but the entire sequence of pre-
dictions P (x1), P (x2|x1), . . . , P (xn+1|xn). This hits upon the prequential
approach to statistical theory, which is based on the premise that such se-
quential probability forecasting is the purpose of statistical inference [Dawid,
1984].

The prequential approach is based on prequential forecasting systems (PFSs).
A PFS is defined as a rule that specifies a conditional distribution on out-
come xn+1 given any possible sequence of n observations of the past at every
sample size n. Any PFS defines a unique sequence of conditional probabil-
ity distributions and vice versa. As shown in Section 1.2.1, any sequence of
conditional distributions defines a unique probabilistic source and vice versa.
It follows that PFSs and probabilistic sources are mathematically equivalent
[Dawid, 1992b]. Nevertheless, they are usually given different interpretations.
A probabilistic source is commonly viewed as a potential explanation for the
data while a PFS is seen as a strategy for predicting the data.

4.1.2 Prediction using PFSs

Previously, we have described MDL and Bayes in terms of probabilistic
sources. Without changing the two methods we now substitute PFSs in-
stead. Thus, we view each probabilistic source in a model as a PFS. In
addition, the sequence of universal models P 1

M, P 2
M, · · · for each model M

defines the PFS PM(x1), P 2
M(x2|x1), P 2

M(x3|x2), · · · . We let both sequences
be denoted by PM since they are mathematically equivalent and only differ
in their interpretations. Likewise, from now on we interpret PMDL (or PBayes)
as a PFS, which combines the PFSs PM for the models (see (1.16) or (1.12)).
The interpretation of PM as a PFS is standard [Dawid, 1992b; Grünwald
et al., 2005]. The interpretation of PMDL (or PBayes) as a PFS, on the other
hand, is less common.

The task of prediction in the presence of multiple models has thus been
decomposed into two (interdependent) stages (see Figure 4.1). Stage one
is to construct a PFS PM for each model M separately. Stage two is to
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Ma

Mb
PMb

PMa

PMDL

Stage One Stage Two

M

Figure 4.1: Construction of PFSs in two stages in regular MDL.

construct a single PFS PMDL out of the individual PFSs PM. The notion of
a PFS has been applied on three levels: first for individual predictors in the
models, then to construct a predictor for each model in stage one, and finally
to construct a single strategy for prediction based on the separate predictors
for the models in stage two. It should be stressed that assumptions and
requirements about the PFSs may differ between levels. We will return to
this in the next section.

Stage One

In stage one alternative approaches for constructing the PFS PM for each
model M are available. For instance, we might use the maximum likelihood
PFS in M:

PM(xn+1|xn) = Pθ̂(xn)(x
n+1),

where

Pθ̂(xn) := arg max
Pθ∈M

Pθ(x
n) = arg min

Pθ∈M

n
∑

i=1

− log Pθ(xi|xi−1)

is the best predictor of all past observations as measured by accumulated pre-
dictive loss. This approach is called the predictive MDL principle [Rissanen,
1986a]. If the data are sampled from a source in M, then, under regularity
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conditions on M, it can be shown that Pθ̂(xn) acts as an efficient universal

model relative to M with probability one [Grünwald et al., 2005], but see
[Grünwald and de Rooij, 2005] for caveats.

Stage Two

As in stage one, alternatives are possible for constructing PMDL in stage two.
For simplicity, we consider the situation with two models in the model set.
In this case such an alternative is provided by the Switch-Point procedure.
It adds the Switch-Point model Ms (see Figure 4.2), which before has been
defined as the set of sources that code the first s outcomes using the source for
model Ma and the rest of the outcomes using the source for model Mb, with
switch-point s ranging over the nonnegative integers. In terms of probabilistic
sources the Switch-Point model may be considered a strange combinator of
the probabilistic sources for the models. Viewed as a set of PFSs, however,
it expresses a natural strategy for prediction that anticipates the momentum
phenomenon. Each PFS in Ms follows the predictions of the PFS PMa

for
Ma up to its switch-point and then uses the predictions of the PFS PMb

for
Mb to predict subsequent outcomes.

PMa

PMb

Stage One

Ms

PMb

PMa

PMs

Stage Two

Ma

Mb

M

PMDL’

Figure 4.2: Construction of PFSs in two stages in the Switch-Point procedure.
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The PFS PMs for Ms that has been defined in (2.1), is called the Switch-
Point code. It predicts according to

PMs(xn+1|xn) =
PMs(x

n+1)

PMs(x
n)

=
∞
∑

s=0

PMs(xn+1|xn, s) · ws(s|xn)

= PMb
(xn+1|xn)

n
∑

s=0

ws(s|xn) + PMa
(xn+1|xn)

(

1 −
n
∑

s=0

ws(s|xn)

)

.

This is a mixture of the predictions according to PMa
and PMb

. The ratio
in the mixture depends on the posterior distribution over the switch-points
ws(s|xn) given observations xn. In particular, it depends on the probability
according to ws(s|xn) of whether the switch-point has already been passed.

As an aside, we point out that PMs can efficiently be computed using the
fact that

PMs(x
n) = PMb

(xn)
n
∑

s=0

ws(s)
PMa

(xs)

PMb
(xs)

+ PMa
(xn)

(

1 −
n
∑

s=0

ws(s)

)

.

In addition, we note that we have slightly extended Dawid’s use of the term
prequential forecasting system. Dawid only applies it to the PFSs con-
structed in stage one and, more recently, also to the PFSs constructed in
stage two [Dawid, 1992a, p. 117]. He does not link the individual probabilis-
tic sources in each model to PFSs.

4.1.3 Different Assumptions between Stages

We have said that assumptions and requirements about the PFSs may differ
between stages one and two. This insight is crucial in understanding the
momentum problem. We will now elaborate and argue that the momen-
tum problem is the result of assumptions implicit in the regular MDL and
Bayesian methods that are justified in stage one, but not in stage two.
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Stage One

In stage one, Bayesian universal models with Jeffreys’ prior are used to ap-
proximate the optimal NML universal model (see Section 1.4). Recall that
the NML universal model for a model M minimises worst-case regret. That
is, it minimises the worst-case additional codelength compared to the best
PFS Pθ̂(xn) in M for the data xn. In general, a Bayesian universal model

based on prior w over the elements of M achieves (reasonably) small regret
on xn if w(θ̂(xn)) is (reasonably) large (see also Section 1.2.7). To construct
PM as a Bayesian universal model for model M therefore means to assign
nearly as short codelength to the data as the best PFS in M for that data.
For the individual PFSs in M it may — by the interpretation of a model —
be assumed that at least one of them describes the data well. Therefore PM

assigns nearly as short codelength to the data as a PFS that describes the
data well. This justifies constructing PM as a Bayesian universal model at
each sample size.

Stage Two

In stage two, the regular MDL procedure constructs PMDL as a Bayesian uni-
versal model for the model set. Just like in stage one this choice is motivated
by examining its (worst-case) regret. The regret of PMDL is defined as the
additional codelength that it assigns to the data, xn, compared to the code
PM that minimises the codelength for xn among all models in the model set.
When there are only few models, as in this thesis, then the regret of PMDL,
which is based on a uniform prior wM over the model set, is always small (see
page 15). It follows that the worst-case regret of PMDL must also be small.

The (worst-case) regret is a good indicator of predictive accuracy if and only
if the code PM for at least one model M describes the data well at all sample
sizes. However, in stage two there is no reason to assume that such a single
optimal model should always exist. In fact, it is this assumption that is
violated whenever the momentum phenomenon occurs! Viewed differently, if
we think of the choice of model as a parameter that needs to be estimated,
then the momentum phenomenon implies that the value of this parameter
is non-constant in the sample size. We conclude that (worst-case) regret is
not the appropriate measure to minimise when the momentum phenomenon
occurs. The design of regular MDL, therefore, does not sufficiently take the
momentum phenomenon into account.
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This strongly suggests that it should be possible to improve on regular MDL
whenever the momentum phenomenon occurs, since we have shown in Sec-
tions 3.1 and 3.2 that the momentum phenomenon may get very large. More-
over, in Section 3.3 we have shown that the Switch-Point procedure, which
refines regular MDL by explicitly modelling at which sample size the best-
predicting model switches, can sometimes actually realise the suggested im-
provement. In addition, we will show in Section 4.2 that the Switch-Point
procedure can never assign much longer codelength to the data than regular
MDL. We conclude that regular MDL may behave suboptimally when faced
with the momentum phenomenon. Therefore the momentum phenomenon
should, in fact, be considered a momentum problem. This is the most im-
portant insight of this thesis.

4.2 Discussion of the Switch-Point Procedure

In Sections 2.3 and 3.3 we found that the Switch-Point procedure may im-
prove predictive performance compared to regular MDL. We will now discuss
some additional characteristics of the Switch-Point procedure.

4.2.1 Applicability

We claimed in Section 2.2 that the worst-case increase in codelength due
to adding the Switch-Point model compared to regular MDL is very small
relative to the total codelength for the data. Formally, this can be verified
by

− log
∑

M∈M∪{Ms}

1

3
· PM(xn) − PMDL(xn) = − log

∑

M∈M∪{Ms}
1
3
· PM(xn)

∑

M∈M

1
2
· PM(xn)

≤ − log
2

3
≈ 0.58,

where the worst case is achieved only if PMs(x
n) = 0. In fact, this worst case

will most likely never be achieved as it follows directly from (2.1) that for
any data sequence xn

Ls(x
n) ≥ − log ws(0)PMb

(xn),
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and hence PMs(x
n) ≥ ws(0)PMb

(xn), which will typically be greater than
zero. There is therefore little risk in using the Switch-Point procedure instead
of regular MDL (or Bayesian Model Averaging). As seen in Section 3.3,
however, the potential gains are significant. A modification to a code that
satisfies these two properties is called an application of the luckiness principle
in [Grünwald, 2007], because we can gain significantly if we are lucky, but
will hardly lose anything if we are not. It is therefore always a safe bet to
use the Switch-Point procedure.

The addition of the Switch-Point model decreases total codelength if the
Switch-Point code assigns shorter codelength to the data than the codes for
the other models. Suppose the momentum phenomenon occurs with size C.
Then the code that switches at the optimal switch-point ŝ will achieve C
bits shorter codelength than the codes for the models Ma and Mb. The
Switch-Point code exceeds this by at most − log ws(ŝ) bits. Therefore

− log PMs(x
n) ≤ min

M∈M

− log PM(xn) − C + [− log ws(ŝ)]. (4.1)

In other words, the Switch-Point code gains at least C − [− log ws(ŝ)] bits if
the momentum phenomenon occurs. We note that this gain does not depend
on the total sample size n.

The bound in (4.1) ignores the probability assigned to the data by all proba-
bilistic sources in the Switch-Point model with switch-points s that are near,
but not exactly at, ŝ. These sources assign nearly as much probability to
the data as the source that switches exactly at ŝ. Hence we have ignored
a significant part of the probability assigned to the data by PMs . Presum-
ably, (4.1) is therefore not a tight bound on the gain that is realised by the
Switch-Point code.

Still, we expect the gain of the Switch-Point code to decrease with increasing
ŝ as then ws(s) will typically be small for all s near ŝ. This is the case in the
proofs from Sections 3.1 and 3.2. There ŝ — called n1 — got very large. It is
therefore not clear whether the Switch-Point code is always able to achieve
significant reductions in codelength when the momentum phenomenon gets
very large. However, preliminary work on a refinement of the Switch-Point
code, which there was no time to report on here, suggests that it is possible
to gain at least 2blog Cc − blog Cc bits. In this refinement the gain depends
only on the size of the momentum phenomenon and not on the switch-point.

The Switch-Point procedure will only decrease codelength if the momentum
phenomenon occurs. The momentum phenomenon can occur if there are
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models in the model set that require a different number of observations to
learn good values for their parameters. In the experiments in this thesis this
was achieved by selecting models of different complexity. However, prelim-
inary additional experiments, not reported on in this thesis, suggest that
it is possible to construct model selection scenarios in which models that
are identical up to a symmetric transformation and therefore have the same
complexity, still require a different number of observations to learn their pa-
rameters1. This shows the difficulty in completely ruling out the possibility
that the momentum phenomenon might occur. It may therefore be prudent
to apply the Switch-Point procedure instead of regular MDL or BMA in
many cases, even when the models are not nested.

4.2.2 Models as Black Boxes

We might consider whether the PFSs PM for the models (see Figure 4.1)
should perhaps always be constructed such that the momentum phenomenon
is avoided. Suppose, however, that we view the PFS for each model as a for-
malisation of the predictive strategy of an expert. This expert might, for
instance, be a meteorologist who predicts the probability of precipitation
just like in the introduction of the Bernoulli example in Section 2.1. In
this case it would seem inappropriate to demand that the experts coordi-
nate their predictions in order to avoid the momentum phenomenon. The
Switch-Point procedure therefore makes no assumptions about the construc-
tion of PFSs for the individual models. It considers these PFSs black boxes
that generate predictions. They may be constructed from the models using
subjective Bayesian priors based on prior belief, objective Bayesian priors
based on practical considerations, using the maximum likelihood PFS or in
any reasonable way at all.

Approaching the predictive distributions for the models as black box proce-
dures makes the Switch-Point code compatible with approaches to combin-
ing predictions by multiple experts as considered by Bousquet and Warmuth
[2002]. Connections to their work are discussed further in Section 4.7, which
reviews options for future work.

1In these experiments the generating distribution was not contained in any of the
models.
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4.2.3 The Switch-Point Procedure Builds on Existing Methods

The Switch-Point procedure can be interpreted as regular MDL prediction
with the Switch-Point model added to deal with the momentum phenomenon.
As such it can easily be compared to those existing methods and many the-
oretical results [e.g. Barron et al., 1998] transfer with little modification. In
addition the Switch-Point procedure inherits all the strengths of MDL.

4.2.4 Alternative Switch-Point Model with Fixed-Ratio Mixtures

We will now substantiate our claim from Section 2.2 that the Switch-Point
model Ms should not be constructed as a set of fixed-ratio mixtures of PMa

and PMb
. That is, we consider defining Ms as

Ms := {θPMa
(xn) + (1 − θ)PMb

(xn) : θ ∈ [0, 1]} ,

which might perhaps be proposed by a Bayesian who would consider putting
some prior w(θ) on the relative weight, θ, of PMa

compared to PMb
. However,

for any θ ∈ [0, 1] we have that

θPMa
(xn) + (1 − θ)PMb

(xn) ≤ max(PMa
(xn), PMb

(xn)), (4.2)

which does not achieve the goal to construct the elements of the Switch-
Point model such that they assign short codelength to the data if the best
predicting model changes from Ma to Mb. By contrast, if the Switch-Point
model is defined as in Section 2.2, then the PFS in the Switch-Point model
that switches at the optimal switch-point will gain a number of bits equal to
the size of the momentum phenomenon compared to both PMa

and PMb
.

4.2.5 Many Models

We now consider extending the Switch-Point procedure to prediction when
there are more than two models. Suppose that in such a setting two models
could be identified that could be anticipated to exhibit the momentum phe-
nomenon. Then a Switch-Point model might be added that switched between
these two models.
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Alternatively, it is conceivable that in prediction with three or more models
Ma, Mb, Mc, etc., the best predicting model could be anticipated to change
two times: first from Ma to Mb and then from Mb to Mc. In such a
scenario a model Ms might be added with two switch-points: s1 to switch
from Ma to Mb and s2 to switch from Mb to Mc. Compared to the two-
model prediction problem on only models Ma and Mc with the Switch-Point
code switching directly from Ma to Mc at switch-point s, the optimal values
for both s1 and s2 will tend to be different from the optimal value for s. It
can be concluded that the addition of model Mb changes the relationship
between model Ma and model Mc under this extension of the Switch-Point
procedure to prediction with more than two models.

4.3 Model Selection

Though our results were obtained for prediction, they have implications for
the task of model selection as well. Recall from Section 1.4 that in model
selection MDL codes the data using a two-part code, which first selects a
model and then codes the data with the help of that model. The Switch-
Point model represents the hypothesis that the best-predicting model will
change in the sample size. If the corresponding Switch-Point code achieves
shorter codelength than the codes for the original models, then we might
wonder whether its hypothesis may actually be a better explanation for the
data than either of the original models.

If the Switch-Point model were added to the model set, then the correspond-
ing two-part code would select it whenever it achieved shortest codelength
among all models. It is not obvious, however, whether we would be justified
in adding it. This can be verified using the MDL principle, which dictates
that the addition of the Switch-Point model is an improvement if the re-
sulting two-part code can be expected to assign shorter codelength to the
data than the original two-part code that did not consider the Switch-Point
model. We can see when this is the case in our experiments, which will be
reconsidered below from the perspective of model selection. It will be seen
that in some cases the addition of the Switch-Point model is justified. From
this we conclude that the momentum problem transfers to model selection
as well. This is the third insight of this thesis.

Assuming a uniform prior wP over the models, the addition of the Switch-
Point model increases the first part of the two-part code by log 3−log 2 ≈ 0.58
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bits. Adding it is therefore justified if it can be anticipated that it will make
up for this overhead in the second part of the code. That is, adding the
Switch-Point model is justified if the Switch-Point code is expected to achieve
at least 0.58 bits shorter codelength than the best of the original models on
typical sequences. There will also exist sequences on which the Switch-Point
code does not reduce total codelength. In the worst case, which is achieved
if the Switch-Point model is not selected, the addition of the Switch-Point
model increases codelength by 0.58 bits. This is small, so adding it is never
a big risk. We will now reexamine our results to see when the addition of
the Switch-Point code reduces total codelength.

First we consider the Bernoulli example. In Figure 2.3 we compared the
Switch-Point code codelength to the codelengths of the codes for original
models on individual sequences that were sampled from different generating
distributions. In Figures 2.3(a), 2.4(e), 2.4(f) and 2.4(g), which correspond
to the sequences sampled with θ∗ equal to 0.6, 0.7, 0.3 and 0.9 respectively,
the Switch-Point code clearly does not achieve the required reduction in
codelength. Figures 2.4(b), 2.4(c) and 2.4(d), which respectively correspond
to θ∗ equalling 0.55, 0.65 and 0.5, are not so easy to read. Inspection of
the raw data, however, reveals that for n ≥ 800 the Switch-Point code gains
approximately 0.47 bits for θ∗ = 0.55 and 0.69 bits for θ∗ = 0.65 compared
to the best of the other two codes. For θ∗ = 0.5 it gains at least 0.9 bits for
all sample sizes. The addition of the Switch-Point model therefore reduces
total codelength for the sequences sampled with θ∗ equal to 0.65 and 0.5.

In Figure 2.4 we compared expected codelengths in the Bernoulli example.
As on the individual sequences, the Switch-Point code does not reduce total
expected codelength under θ∗ equal to 0.6, 0.3 and 0.9, which are shown
in Figures 2.4(a), 2.5(f) and 2.5(g) respectively. Under θ∗ equal to 0.5 and
0.7, shown in Figures 2.5(d) and 2.5(e) respectively, it reduces total expected
codelength for about 20 sample sizes around 90 and 100 respectively. Finally,
Figures 2.5(b) and 2.5(c), which show expected codelength under θ∗ equalling
0.55 and 0.65 respectively, show that the Switch-Point code achieves approx-
imately 1.5 bits shorter codelength for sample sizes over 560. In these cases
the addition of the Switch-Point model therefore reduces total codelength by
approximately 0.92 bits, which is small, but may be considered significant
considering that the momentum phenomenon is also small in the Bernoulli
example. We conclude that based on our experiments it remains unclear
whether the addition of the Switch-Point model is justified in the Bernoulli
example.
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We now consider the Conditional Bernoulli example. In Figure 3.1 we com-
pared the expected Switch-Point code codelength to the expected codelengths
for the two Conditional Bernoulli models. In Figures 3.1(a), 3.1(b), 3.2(f)
and 3.2(h), which show the expected codelengths under θ∗

x equal to 0.2, 0.3,
0.6 and 0.9999 respectively, the Switch-Point code does not achieve the re-
quired reduction in expected codelength. However, in Figures 3.2(c), 3.2(d),
3.2(e) and 3.2(g), which correspond to θ∗x equal to 0.37, 0.38, 0.4 and 0.8
respectively, it does reduce total expected codelength. In these cases the
number of bits gained by adding the Switch-Point model ranges from ap-
proximately 2 to 5 bits. As argued in Section 3.3, the gain may be even
larger if the difference in complexity between the models were scaled up by
taking d � 32 or by taking θ∗x even closer to 0.6. We conclude that the
addition of the Switch-Point model may significantly reduce total codelength
and is therefore justified in the Conditional Bernoulli example.

4.4 Prior Work

Though the momentum problem has not been extensively investigated in
any prior work, several existing results suggest that it has been encountered
before. This section sheds more light on some of those results by explaining
them in terms of the momentum phenomenon and the momentum problem.
All prior work that we will consider, is on model selection. We first recog-
nise the momentum phenomenon in a discussion among experts on Dawid’s
prequential approach to statistics. Then, similarities between MDL and the
so-called predictive least squares principle suggest an occurrence of the mo-
mentum problem in regression among normal linear models. Furthermore, we
challenge the claimed predictive optimality of the so-called median probabil-
ity model. And finally, we briefly mention the method of forward validation,
which may be related to our work.

4.4.1 Start-up Problem

In [Dawid, 1992b] the prequential approach to statistics is connected to MDL
and Bayes factors model selection. This paper is followed by a discussion
among experts. In this discussion, J. Rissanen writes:
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“[A]ttention must be paid to an inherent start-up problem, which
arises from poor initial predictions. Unless checked, these can
grossly penalize a complex model, which at the later stages may
turn out to provide superior predictions.”

We may interpret Rissanen’s words in two ways. The first, suggested by
his other writings [e.g. Rissanen, 1989, 1986a], is that Rissanen is think-
ing of an entirely different problem that arises in predictive MDL (see Sec-
tion 4.1.2) when the maximum likelihood estimator assigns probability zero
— and therefore infinite codelength — to the next outcome. The other pos-
sible interpretation is that Rissanen is warning us about something like the
momentum problem. This latter interpretation fits best with the response
by A. P. Dawid, who writes:

“It seems to me perfectly reasonable that a complex model should
be heavily penalized in the initial stages, since the slow rate at
which its parameters can be learned means that it may for a long
time predict more poorly than a simpler ‘incorrect’ model. In
this case I would rather use the simple model until the data are
sufficiently extensive as to demand more detailed description. In
general, the complexity of the model used should increase with
the amount of data available[.]”

Following Dawid, we therefore adopt the second interpretation. In this case
it is exactly such a start-up problem that we have captured by our definition
of the momentum phenomenon. Using insights gained from the momentum
phenomenon and the momentum problem, we can explain the difference of
opinion between Rissanen and Dawid as follows.

Rissanen suggests that we should attempt to avoid poor initial predictions
that grossly penalise a complex model. This implies that we should change
the construction of the PFSs for the models in stage one (see Figure 4.1). Fol-
lowing his suggestion would have several unappealing consequences however.
For one thing, it does not treat models as black boxes (see Section 4.2.2).
This rules out using subjective Bayesian priors, even if they are available,
and makes models unsuitable as formalisations of predictive strategies by
experts. In addition, it does not even seem possible to avoid the momentum
phenomenon in all possible model selection scenarios. Consider, for instance,
model selection between the Full Bernoulli model and, say, twenty models
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like the Single Bernoulli model with parameters that are spread out over
the parameter space of the Full Bernoulli model. To avoid the momentum
phenomenon between the Full Bernoulli model and every other model in this
setting, the Full Bernoulli model should, even for small sample sizes, predict
equally well as all the other models. This, however, cannot be achieved.

Dawid, on the other hand, considers the occurrence of the momentum phe-
nomenon perfectly reasonable. He correctly discerns two regions of sample
sizes: the initial stages where a simple model is the best predictor of future
data, and the region where the data are sufficiently extensive as to demand
more detailed description. If we may use our rough sketch from Figure 1
in the preface for illustration, then these regions respectively correspond to
regions A and B together and region C. As a consequence of the momentum
problem, however, we distinguish between the regions A and B separately.
Just like MDL and Bayes factors model selection, Dawid’s prequential ap-
proach will select the simple model in region B instead of the best-predicting
complex model. In addition, by our argument in Section 3.1 region B may
get very large. Dawid would therefore be wise to heed Rissanen’s warning
that the complex model may be grossly penalised for poor initial predictions,
which applies exactly to region B.

4.4.2 Predictive Least Squares

The Predictive Least Squares (PLS) principle [Rissanen, 1986b] selects the
model that minimises the accumulated squared error of sequentially predict-
ing the next outcome in time-series data. At each time-step it uses the
maximum likelihood parameter estimate within each model on the observed
data to predict the most likely future outcome. We recognise the momen-
tum phenomenon in a simulation study by Wei [1992], which compares PLS
to, among others, AIC [Akaike, 1974] and BIC [Schwarz, 1978] in regression
among normal linear models. For the current setting there exists a strong
relationship [c.f. (1.4) in Wei, 1992] between PLS and predictive MDL, which
was introduced in Section 4.1.2. Though the exact relationship between pre-
dictive MDL and our approach based on Bayesian universal models has not
been completely mapped out in general [De Rooij and Grünwald, 2006], it
seems plausible that the momentum phenomenon transfers. The momentum
phenomenon might therefore also occur with PLS. Admittedly, this reasoning
depends on similarities between procedures that may not (completely) hold
true. Remarks in [Wei, 1992], however, strongly remind us of the momentum
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phenomenon, which justifies a brief discussion. We will first introduce model
selection in regression among normal linear models and then discuss Wei’s
simulation study.

Regression may be viewed as prediction with side information and is closely
related to prediction as considered in this thesis. Normal linear models are
of the form:

y = β ′x + ε with ε ∼ N (0, σ2),

where the independent side information x is a vector of d variables and the
dependent variable y is predicted based on estimates of the d-parameter vec-
tor β and the variance σ2 of the normally distributed noise ε. It is assumed
that the data arrive in sequence, (xn, yn) := (x1, y1), (x2, y2), . . . , (xn, yn),
and that the noise for each yi is independent of the other outcomes in the
sequence. The task is to predict yn+1 given xn+1 and all past observations
(xn, yn). The model that estimates all components of β is called the full
model. The model set consists of submodels of the full model that exclude
different components of x for the prediction of y, i.e. submodels that al-
ways set specific components of β to zero. For normally distributed noise
it is natural to measure the loss of the models by the squared error of their
predictions. This motivates the PLS principle.

Presumably, the momentum phenomenon and the momentum problem can
be reproduced for the regression setting. Suppose, for instance, that the data
are sampled from a source in the full model that has most components of β
only slightly different from zero. Then we can expect that the submodel that
sets these components of β to zero will converge quickly and predict well for
small sample sizes, but also that the full model will eventually converge to its
optimal parameter estimates and start outperforming the simple submodel.
We will then observe the momentum phenomenon and most likely be able to
exploit it by the Switch-Point procedure.

Wei’s simulation study randomly samples 50 outcomes from a source in dif-
ferent models with d = 3 and σ2 = 1. The models are of different size: model
M0 estimates one component of β, both models M1 and M2 contain M0 and
estimate two components of β, and finally M3 is the full 3-parameter model,
which contains all other models. The experiment is repeated 100 times and
the number of times each model is selected is counted. When data are sam-
pled from a source in the relatively small models M1 and M2, it is found
that PLS selects the generating model 98 and 99 times, respectively, which
is highest among all evaluated procedures. When data are sampled from
a source in the full model M3, however, PLS selects the generating model
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only 89 times while all of the other procedures select it every time. Wei’s
examination of the details reveals that in most of the 11 samples for which
PLS selected a smaller model, the total loss of model M3 was dominated by
large prediction errors on the first few observations. We conclude that Wei
has observed the momentum phenomenon.

Wei considers PLS to be in error on the 11 samples from M3 on which it
did not select the generating model. To avoid overly penalising complex
models for poor initial predictions, Wei proposes to exclude the first few
observations from the evaluation of predictive accuracy. It remains unclear,
however, how many initial observations should be discarded: too many wastes
data, too few does not avoid the momentum phenomenon. Wei explains
PLS’s behaviour by referring to Rissanen [1986b], who also observes PLS’s
preference for simple models. Rissanen, however, considers such preference
desirable, because, for small sample sizes, a small model may better predict
future data than a large model that contains the generating source for the
data.

The difference in opinion between Wei and Rissanen is illuminated when
cast in terms of the momentum phenomenon. If the momentum phenomenon
occurs, then it benefits prediction to prefer simple models over more complex
models at small sample sizes as claimed by Rissanen. This corresponds to
region A in Figure 1. However, the generating more complex model will
still become the best predictor eventually, which corresponds to regions B
and C from the figure. When this happens it first needs to make up for its
poor initial predictions before it is selected. This corresponds to region B.
Therefore in region B PLS may still overly penalise complex models for poor
initial predictions as assumed by Wei.

4.4.3 Predictive Optimality of the Median Probability Model

In the same regression setting Barbieri and Berger [2004] introduce the me-
dian probability model, which they define as the model that includes exactly
those components of x as are included by all the models in any set of models
of which the total posterior probability is at least 0.5. They call the equiva-
lent of PBayes in the regression setting the optimal Bayesian predictor of yn+1

given xn+1. Then they prove that the median probability model, under vari-
ous assumptions, minimises the expected prediction error under the optimal
Bayesian predictor. Subsequently, they claim that this is optimal predictive
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model selection. By identifying the momentum problem, however, we have
shown that PBayes is not always the optimal strategy for prediction. It may
therefore be questioned whether minimising expected prediction error under
PBayes may be considered optimal. We conclude that, in light of the momen-
tum problem, the claimed predictive optimality of the median probability
model should be reevaluated.

4.4.4 Forward Validation

We mention the method of forward validation proposed by Hjorth [1982],
which may be related to the momentum problem. Forward validation is
closely related to Dawid’s prequential approach [Rissanen, 1989, p. 68]. Wa-
genmakers et al. [2006] note that the sequential predictions in forward vali-
dation are weighted by the number of observations on which they are based.
According to them this “reduces the concern that complex models may be
overly penalised in the initial stages of the sequential prediction procedure.”
Hjorth, however, does not explicitly mention the dependence of the weights
on the number of observations. It therefore remains unclear whether for-
ward validation might offer any insights that help to resolve the momentum
problem.

4.5 Chapter Summary

We have introduced Dawid’s prequential approach to statistics, which asserts
that the purpose of statistical inference is the construction of prequential
forecasting systems (PFSs). We have interpreted MDL and Bayes as the
construction of PFSs in two stages. Then we argued that the design of regular
MDL does not take the momentum into account in the second stage, which
explains why the Switch-Point procedure, which has been explicitly designed
with the momentum phenomenon in mind, is able to improve predictive
accuracy compared to regular MDL.

We then explored characteristic properties of the Switch-Point procedure.
The Switch-Point procedure is an application of the luckiness principle, which
concerns modifications to a code such that it assigns significantly shorter
codelength to the data if we are lucky and not much longer codelength if we
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are not. We therefore argued that it should always be applied if the occur-
rence of the momentum phenomenon cannot be ruled out. In the current
analysis the gain of the Switch-Point procedure depends on the size of the
momentum phenomenon and on the optimal switch-point ŝ. However, pre-
liminary work suggests that the Switch-Point procedure can be refined such
that its gain depends only on the size of the momentum phenomenon and
not on ŝ.

Next, we considered implications of our results for model selection. We ar-
gued that the Switch-Point model should be considered as an alternative
explanation for the data in the Conditional Bernoulli example. Whether it
should be considered in the Bernoulli example as well remained unclear.

Finally, we considered prior work related to the momentum problem. A dis-
cussion between J. Rissanen and A. P. Dawid was clarified by insights into
the momentum problem. Then we recognised the momentum problem in
regression with normal linear models, which may be interpreted as predic-
tion with side information. In the same regression setting, we questioned
the claimed optimality of the median probability model. Finally, we briefly
mentioned forward validation as a candidate to provide further insights into
the momentum problem.

4.6 Conclusions

The Minimum Description Length principle equates learning with finding a
short description for the data. In this thesis we applied the MDL principle to
prediction and model selection when multiple explanations, or models, were
available for the data. Prediction is the task of predicting the next outcome
given the data; model selection requires to select a single model to explain
the data. The resulting MDL procedures could be interpreted as Bayesian
Model Averaging and Bayes factors model selection, respectively. Our results
therefore transfer to these Bayesian procedures directly.

As our first contribution we identified the momentum phenomenon in pre-
diction. The momentum phenomenon arises when one model enables the
most accurate predictions of the future given few observations of the past,
but predictions based on another model become more accurate when more
data are collected. It was proved that the momentum phenomenon may get
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very large. We argued, however, that the design of regular MDL does not
take the existence of the momentum phenomenon into account.

As our second contribution we therefore developed the Switch-Point proce-
dure, which deals with the momentum phenomenon by adding the Switch-
Point model to the set of models in regular MDL. The Switch-Point model
represents the hypothesis that the best-predicting model will change over
time. We showed that the Switch-Point procedure can never predict much
worse than regular MDL, but may predict significantly better when the mo-
mentum phenomenon occurs. We argued that for regular MDL the momen-
tum phenomenon should therefore be considered a momentum problem. This
is the main insight of this thesis.

Finally, we considered adding the Switch-Point model when the task was
model selection. We showed that adding the Switch-Point model can never
much increase the total codelength for the data, but may reduce the to-
tal codelength whenever the momentum phenomenon occurs. By the MDL
principle its addition is therefore justified. This is our third contribution.

4.7 Future Work

In this section we will discuss some possible extensions of our results. We
first consider connections to research on combining predictions from multiple
experts when the relative quality of their predictions is unknown and might
change over time; then we suggest some possible approaches to generalising
our proofs; and finally we propose an extension of the Switch-Point code that
is insensitive to the order of the data.

4.7.1 Tracking the Best Expert

Consider model selection among many nested models, none of which contain
the generating source for the data. To guide our thoughts we might, for
instance, imagine the models as Markov chains of increasing order and the
generating source as some Markov chain of higher order than contained in
any of the models. As the larger (higher order) models need more data before
they converge to their best predictor and the source for the data is not in
any of the models, it is likely that subsequent outcomes are predicted best



Future Work 99

by increasingly complex models. In that case the momentum phenomenon
would occur at each switch to a more complex model and it should be possible
to improve predictive performance by designing an appropriate counterpart
to the Switch-Point code.

To this end we might start looking for inspiration in recent work on combining
the predictions from multiple experts (models) by [Bousquet and Warmuth,
2002], which we have referred to before in Section 4.2. They consider the
(slightly different) problem of sequentially combining predictions from many
experts in time-series data when the best-predicting expert shifts back and
forth between a few of the experts. Though starting from a different frame-
work, they make efforts to give their approach a Bayesian interpretation in
terms of posterior distributions. In addition they connect its efficiency to the
codelength of a code that first codes the set of best-predicting experts, then
the switch-points, and finally which of the best-predicting experts predicts
best in each of the intervals between switch-points.

4.7.2 Extending Proofs

In Section 3.1 we showed that the momentum phenomenon occurs in proba-
bility for some generating distributions in the Bernoulli example if a Bayesian
universal model with Jeffreys’ prior is used as a universal model for the Full
Bernoulli model. With few modifications, however, the proof can be extended
to cover any continuous prior for the Bayesian universal model. The main
difficulty is to show that f(n1), as defined in (3.14), is of order o(1) or at least
O(1). This does not follow from [Balasubramanian, 1997] anymore, because
that paper only considers Jeffreys’ prior. The required property is explicitly
shown in [Grünwald, 2007], however, but no preliminary version of the proof
was available at the time of our investigations.

Moreover, our proof in expectation from Section 3.2 suggests that the proof
in probability from Section 3.1 might even be extended to general exponen-
tial families. The difficulty, then, would lie in finding counterparts to the
convex sets E1 and E2 that together partition the part of the model where
D(Pθ‖Pθ∗) ≥ h(n1).
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4.7.3 Data-ordering Insensitive Switch-Point Code

The Switch-Point code depends on the order of the data, which might be
undesirable if there is no natural order to the data. We therefore consider
the following extension of the Switch-Point code that is insensitive to the
order of the data. Suppose that the data are indexed from 1 to n. Then
the Switch-Point code codes the data in exactly that order: 1, · · · , n. With
equal validity, however, it might have coded the data in any arbitrary fixed
order as long as that order did not depend on the data. Let the set of
all possible permutations of the n indices be denoted by On, let Lo denote
the codelength assigned to the data by an alternative Switch-Point code that
codes the data in order o ∈ On and let Po be the probability distribution such
that − log Po(x

n) = Lo(x
n). As a first step, consider the Bayesian universal

model

POn
(xn) =

1

|On|
∑

o∈On

Po(x
n). (4.3)

that uses a uniform prior over the Po. For data that are independently and
identically distributed we would expect the momentum phenomenon to occur
for most random reorderings of the data, which implies that most Lo should
assign short codelength to the data. Therefore the code with codelengths
LOn

(xn) = − log POn
(xn) should assign short codelength to the data as well.

Note that this code is insensitive to reordering of the data.

Unfortunately, however, the size of On is prohibitive for all but very small
n, which makes computation of LOn

(xn) infeasible. We therefore propose
the following alternative: select an ordering o ∈ On uniformly at random.
Do this k times for some manageable number k and call the resulting set of
orderings On,k. Then construct the Bayesian universal model

POn,k
(xn) =

1

|On,k|
∑

o∈On,k

Po(x
n).

for the set On,k. As the orderings in On,k have been uniformly selected
from On, most of the orderings in On,k should be highly typical and thus
exhibit the momentum phenomenon, regardless of the order of the data. The
code with codelengths LOn,k

(xn) = − log POn,k
(xn) should therefore retain the

desirable properties of the Switch-Point code while still being insensitive to
the ordering of the data. If this code is applied to multiple data sets, then,
in order to avoid degenerative performance on the worst data set, it should
ideally be reconstructed for every data set by regenerating On,k.
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APPENDIX A

Posterior Distribution for the

Conditional Bernoulli Model

Changing notation for convenience of exposition, (3.67) states that the pos-
terior probability of the next outcome according to the Conditional Full
Bernoulli model using Jeffreys’ prior is given by

PM3(Yn+1 = 1|xn+1, x
n, yn) =

n1 + 1
2

a + 1
,

where a denotes the number of occurrences of xn+1 in xn and n1 denotes the
number of i ∈ [1, n] such that xi = xn+1 and yi = 1. We will now prove this.
To this end we first compute the entries of the Fisher information matrix
for the Conditional Full Bernoulli model. Then we compute Jeffreys’ prior.
Letting n0 denote the number of i ∈ [1, n] such that xi = xn+1 and yi = 0,
which implies that n0 + n1 = a, we end by showing that

PM3((Xn+1, Yn+1) = (k, 1)|xn, yn) =
1

d
· n1 + 1

2

n0 + n1 + 1
(A.1)

for any k, which implies (3.67).

A.1 Fisher Information

Each source in the Conditional Full Bernoulli model describes the paired ob-
servations (x1, y1), (x2, y2), · · · as independently and identically distributed.
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106 Posterior Distribution for the Conditional Bernoulli Model

Therefore

Iij(θ
∗) = lim

n→∞

1

n
Eθ∗

[

− ∂2

∂θi∂θj

ln Pθ(X
n, Y n)

]

θ=θ∗

= Eθ∗

[

− ∂2

∂θi∂θj

ln Pθ(X,Y )

]

θ=θ∗

= Eθ∗

[

− ∂2

∂θi∂θj

(

ln
1

d
+ Y · ln θX + (1 − Y ) · ln(1 − θX)

)]

θ=θ∗
.

Terms in which X 6= j become 0 when taking the derivative to θj. Therefore

Iij(θ
∗) =

∑

y

Pθ∗(j, y)

[

− d

dθi

(

y

θj

− 1 − y

1 − θj

)]

θ=θ∗
.

It follows that Iij(θ
∗) = 0 if i 6= j and if i = j, then, as y ∈ {0, 1},

Iii(θ
∗) =

[

∑

y

Pθ∗(i, y)
y

θ2
i

+
∑

y

Pθ∗(i, y)
1 − y

(1 − θi)2

]

θ=θ∗

=
1

d
·
[

θ∗i
θ2

i

+
1 − θ∗i

(1 − θi)2

]

θ=θ∗

=
1

d
· 1

θ∗i (1 − θ∗i )
.

A.2 Jeffreys’ Prior

Jeffreys’ prior can now be computed by

wJeffreys(θ) =

√

|I(θ)|
∫

θ∈Θ

√

|I(θ)| dθ

=

√
dd ·

√

∏d
i=1 1/θi(1 − θi)

√
dd ·

∫

θ∈[0,1]d

√

∏d
i=1 1/θi(1 − θi) dθ

=

∏d
i=1

√

1/θi(1 − θi)
∫

· · ·
∫ 1

0

∏d
i=1

√

1/θi(1 − θi) ∂θ1 · · · ∂θd

=

∏d
i=1

√

1/θi(1 − θi)
∏d

i=1

∫ 1

θi=0

√

1/θi(1 − θi) ∂θi

=

∏d
i=1

√

1/θi(1 − θi)

πd
.



Posterior with Jeffreys’ Prior 107

A.3 Posterior with Jeffreys’ Prior

Let Z := (X,Y ) abbreviate our notation. Then

PM3(x
n, yn) = PM3(z

n) =

∫

θ∈[0,1]d
Pθ(x

n) · Pθ(y
n|xn) · wJeffreys(θ) dθ.

Let n0(i, z
n) and n1(i, z

n) respectively denote the number of occurrences of
(i, 0) and (i, 1) in zn. Then

PM3(z
n) =

∫

θ∈[0,1]d
d−n ·

(

d
∏

i=1

θ
n1(i,zn)
i · (1 − θi)

n0(i,zn)

)

·
∏d

i=1

√

1/θi(1 − θi)

πd
dθ

=
d−n

πd
·
(

d
∏

i=1

∫ 1

0

θ
n1(i,zn)− 1

2
i · (1 − θi)

n0(i,zn)− 1
2 dθi

)

.

Therefore

PM3((Xn+1, Yn+1) = (k, 1)|zn) =
P (Zn+1 = (k, 1), zn)

P (zn)

=

d−(n+1)

πd ·
(

∏

i∈{1,d}−{k}

∫ 1

0
θ

n1(i,zn)− 1
2

i · (1 − θi)
n0(i,zn)− 1

2 dθi

)

d−n

πd ·
(

∏

i∈{1,d}

∫ 1

0
θ

n1(i,zn)− 1
2

i · (1 − θi)
n0(i,zn)− 1

2 dθi

)

×
∫ 1

0

θ
n1(k,zn)+1− 1

2
k · (1 − θk)

n0(k,zn)− 1
2 dθk

= d−1 ·
∫ 1

0
θ

n1(k,zn)+ 1
2

k · (1 − θk)
n0(k,zn)− 1

2 dθk

∫ 1

0
θ

n1(k,zn)− 1
2

k · (1 − θk)
n0(k,zn)− 1

2 dθk

.

Now define

Fθ(n0, n1) :=

∫ 1

0

θn1−
1
2 · (1 − θ)n0−

1
2 dθ.

Then this can be rewritten as

PM3((Xn+1, Yn+1) = (k, 1)|zn) =
d−1Fθk

(n0(k, zn), n1(k, zn) + 1)

Fθk
(n0(k, zn), n1(k, zn))

.

It will be convenient to show that

Fθ(n0, n1) =

∫ 1

0

(1 − θ + θ) · θn1−
1
2 · (1 − θ)n0−

1
2 dθ

=

∫ 1

0

θn1−
1
2 · (1 − θ)n0+ 1

2 dθ +

∫ 1

0

θn1+ 1
2 · (1 − θ)n0−

1
2 dθ

= Fθ(n0 + 1, n1) + Fθ(n0, n1 + 1).
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In addition, integration by parts shows that

Fθ(n0 + 1, n1) =
n0 + 1

2

n1 + 1
2

Fθ(n0, n1 + 1).

We now abbreviate n0(k, zn) to n0 and n1(k, zn) to n1. Then

PM3((Xn+1, Yn+1) = (k, 1)|zn) =
d−1Fθk

(n0, n1 + 1)

Fθk
(n0, n1)

=
d−1Fθk

(n0, n1 + 1)

Fθk
(n0 + 1, n1) + Fθk

(n0, n1 + 1)

=
d−1Fθk

(n0, n1 + 1)
n0+ 1

2

n1+ 1
2

Fθk
(n0, n1 + 1) + Fθk

(n0, n1 + 1)

= d−1 · n1 + 1
2

n0 + n1 + 1
,

which completes the proof of (A.1).


